Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments

Carbonates are a group of minerals that play an essential role in several processes on planet Earth, for example in the global carbon cycle and as a product of biomineralisation. Calcite (CaCO3) is by far the most common mineral in the carbonate group, and the stable form of carbonate at Earth surfa...

Full description

Bibliographic Details
Main Author: Tollefsen, Elin
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Stockholms universitet, Institutionen för geologiska vetenskaper 2020
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180194
id ftstockholmuniv:oai:DiVA.org:su-180194
record_format openpolar
spelling ftstockholmuniv:oai:DiVA.org:su-180194 2023-05-15T16:30:31+02:00 Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments Tollefsen, Elin 2020 application/pdf http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180194 eng eng Stockholms universitet, Institutionen för geologiska vetenskaper Stockholm : Department of Geological Sciences, Stockholm University Meddelanden från Stockholms universitets institution för geologiska vetenskaper 380 orcid:0000-0003-0518-7954 http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180194 urn:isbn:978-91-7911-022-2 urn:isbn:978-91-7911-023-9 info:eu-repo/semantics/openAccess ikaite petrology experiment geochemistry marine environments pseudomorphs calcium carbonate Ikka Fjord glendonite nepheline siderite paleotemperature carbonatite Geology Geologi Doctoral thesis, comprehensive summary info:eu-repo/semantics/doctoralThesis text 2020 ftstockholmuniv 2023-02-23T21:43:15Z Carbonates are a group of minerals that play an essential role in several processes on planet Earth, for example in the global carbon cycle and as a product of biomineralisation. Calcite (CaCO3) is by far the most common mineral in the carbonate group, and the stable form of carbonate at Earth surface conditions. However, calcite growth is often kinetically limited and polymorphs of calcite or hydrous calcium carbonates will form instead under certain circumstances. In this thesis, I investigate a hydrous form of calcium carbonate, ikaite (CaCO3 · 6H2O), which occasionally forms under conditions where normally calcite formation would be expected. Ikaite is metastable at surface conditions and has only been observed in nature at temperatures below 7°C. In Ikka Fjord, southwest Greenland, several hundred ikaite columns occur at the bottom of the fjord. Previous studies in Ikka Fjord have shown that ikaite columns are forming above submarine springs that are extremely sodium carbonate rich (pH ~10.5). An association with the surrounding igneous rocks, which comprise nepheline syenite and carbonatite, has been suggested. In the first part of this thesis, I investigate this association. A petrographic study of rocks samples from the igneous complex showed that the combined alteration of the minerals siderite and nepheline could explain the composition of the submarine spring water, and thereby the unique formation of ikaite columns at this site. It is from the mixture of sodium carbonate spring water and seawater that ikaite precipitates in Ikka Fjord, despite the fact that all other calcium carbonates are supersaturated in this mixture. Why ikaite precipitates and not the other forms of calcium carbonate was investigated by a series of experiments in the second and third parts of this thesis. Previous studies have suggested that ikaite was favoured by the low temperature in the fjord (<7°C) and the presence of phosphate (95- 263 μmol/kg) in the submarine spring water, which is known to inhibit calcite growth even ... Doctoral or Postdoctoral Thesis Greenland Stockholm University: Publications (DiVA) Greenland Ikka ENVELOPE(-48.100,-48.100,61.150,61.150)
institution Open Polar
collection Stockholm University: Publications (DiVA)
op_collection_id ftstockholmuniv
language English
topic ikaite
petrology
experiment
geochemistry
marine environments
pseudomorphs
calcium carbonate
Ikka Fjord
glendonite
nepheline
siderite
paleotemperature
carbonatite
Geology
Geologi
spellingShingle ikaite
petrology
experiment
geochemistry
marine environments
pseudomorphs
calcium carbonate
Ikka Fjord
glendonite
nepheline
siderite
paleotemperature
carbonatite
Geology
Geologi
Tollefsen, Elin
Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
topic_facet ikaite
petrology
experiment
geochemistry
marine environments
pseudomorphs
calcium carbonate
Ikka Fjord
glendonite
nepheline
siderite
paleotemperature
carbonatite
Geology
Geologi
description Carbonates are a group of minerals that play an essential role in several processes on planet Earth, for example in the global carbon cycle and as a product of biomineralisation. Calcite (CaCO3) is by far the most common mineral in the carbonate group, and the stable form of carbonate at Earth surface conditions. However, calcite growth is often kinetically limited and polymorphs of calcite or hydrous calcium carbonates will form instead under certain circumstances. In this thesis, I investigate a hydrous form of calcium carbonate, ikaite (CaCO3 · 6H2O), which occasionally forms under conditions where normally calcite formation would be expected. Ikaite is metastable at surface conditions and has only been observed in nature at temperatures below 7°C. In Ikka Fjord, southwest Greenland, several hundred ikaite columns occur at the bottom of the fjord. Previous studies in Ikka Fjord have shown that ikaite columns are forming above submarine springs that are extremely sodium carbonate rich (pH ~10.5). An association with the surrounding igneous rocks, which comprise nepheline syenite and carbonatite, has been suggested. In the first part of this thesis, I investigate this association. A petrographic study of rocks samples from the igneous complex showed that the combined alteration of the minerals siderite and nepheline could explain the composition of the submarine spring water, and thereby the unique formation of ikaite columns at this site. It is from the mixture of sodium carbonate spring water and seawater that ikaite precipitates in Ikka Fjord, despite the fact that all other calcium carbonates are supersaturated in this mixture. Why ikaite precipitates and not the other forms of calcium carbonate was investigated by a series of experiments in the second and third parts of this thesis. Previous studies have suggested that ikaite was favoured by the low temperature in the fjord (<7°C) and the presence of phosphate (95- 263 μmol/kg) in the submarine spring water, which is known to inhibit calcite growth even ...
format Doctoral or Postdoctoral Thesis
author Tollefsen, Elin
author_facet Tollefsen, Elin
author_sort Tollefsen, Elin
title Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
title_short Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
title_full Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
title_fullStr Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
title_full_unstemmed Experimental, petrological and geochemical investigations of ikaite (CaCO3·6H2O) formation in marine environments
title_sort experimental, petrological and geochemical investigations of ikaite (caco3·6h2o) formation in marine environments
publisher Stockholms universitet, Institutionen för geologiska vetenskaper
publishDate 2020
url http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180194
long_lat ENVELOPE(-48.100,-48.100,61.150,61.150)
geographic Greenland
Ikka
geographic_facet Greenland
Ikka
genre Greenland
genre_facet Greenland
op_relation Meddelanden från Stockholms universitets institution för geologiska vetenskaper
380
orcid:0000-0003-0518-7954
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180194
urn:isbn:978-91-7911-022-2
urn:isbn:978-91-7911-023-9
op_rights info:eu-repo/semantics/openAccess
_version_ 1766020250220888064