Interactions vagues-banquise en zones polaires

La banquise, qui couvre de larges étendues de l’océan près des pôles, est une composante majeure du climat. Le réchauffement de la planète entraîne sa fonte massive, en particulier en Arctique.Là où l’extension de la banquise diminue, l’augmentation du fetch est associée à une élévation de la hauteu...

Full description

Bibliographic Details
Main Author: Boutin, Guillaume
Other Authors: Brest, Ardhuin, Fabrice
Format: Thesis
Language:French
Published: 2018
Subjects:
Online Access:http://www.theses.fr/2018BRES0050/document
id ftstarfr:2018BRES0050
record_format openpolar
spelling ftstarfr:2018BRES0050 2023-05-15T15:19:55+02:00 Interactions vagues-banquise en zones polaires Waves-sea ice interactions in polar seas Boutin, Guillaume Brest Ardhuin, Fabrice 2018-10-19 http://www.theses.fr/2018BRES0050/document fr fre http://www.theses.fr/2018BRES0050/document Open Access http://purl.org/eprint/accessRights/OpenAccess Vagues Banquise Modélisation Zone Marginale de Glace Waves Sea ice Model Marginal Ice Zone 551.343 Electronic Thesis or Dissertation Text 2018 ftstarfr 2021-04-20T22:48:52Z La banquise, qui couvre de larges étendues de l’océan près des pôles, est une composante majeure du climat. Le réchauffement de la planète entraîne sa fonte massive, en particulier en Arctique.Là où l’extension de la banquise diminue, l’augmentation du fetch est associée à une élévation de la hauteur des vagues, laissant penser que les effets liés aux interactions vagues-glace pourraient s’accroître dans le futur. L’évolution rapide de la banquise associée à l’intensification des activités humaines dans les régions polaires pressent à améliorer notre connaissance de ces interactions.La banquise atténue les vagues. Elles peuvent néanmoins s’y propager et briser la glace sur de longues distances. L’atténuation dépend des propriétés de la glace comme l’épaisseur, la taille des plaques. Les plaques de glace une fois cassées sont plus susceptibles de dériver et de fondre. En outre, lors de l’atténuation, les plaques sont poussées dans la direction de propagation des vagues.Une représentation simple de la banquise dans un modèle de vagues intégrant une distribution de la taille des plaques nous a permis de montrer l’importance des mécanismes dissipatifs dans l’atténuation, notamment ceux induits par la flexion de la glace.Après avoir été validé, ce modèle a été couplé à un modèle de glace. La taille des plaques est échangée et utilisée dans le calcul de la fonte latérale. La force exercée par les vagues sur la banquise est également envoyée depuis le modèle de vagues. En été, cette force compacte la glace et tend à diminuer la fonte, augmentant significativement la température et la salinité des eaux de surface au bord de la banquise. Sea ice, which covers most of the ocean near the poles, is a key component of the climate system. Global warming is driving its massive melting, especially in the Arctic. Where sea ice cover decreases, fetch increases leading to more energetic sea states. This means potentially enhanced wavesice interactions effects in the future. The quick evolution of sea ice extent and volume combined with the intensification of human activities in polar regions urge us to improve our understanding of waves-ice interactions.Sea ice attenuates waves. They can however propagate through it and break it far into the ice cover. Attenuation depends on ice properties such as floe size, thickness, etc. Once broken, resulting floes are more likely to drift and melt. In addition, wave attenuation yields a force which pushes the floes in the direction of wave propagation.A simplified representation of sea ice, including a floe size distribution, has been incorporated in a wave model.It allows us to show the important contribution of dissipative mechanisms in the wave attenuation, especially those induced by the bending of the ice plates. After validation, the modified wave model is coupled to an ice model. The floe size distribution is exchanged in the coupled framework and used in ice lateral melt computation. The force exerted by the waves on the ice floes is sent from the wave model and is shown to compact sea ice in summer. This reduces the melting and significantly increases the temperature and salinity in the surface ocean close to the ice edge. Thesis Arctic Arctique* banquise Global warming Sea ice theses.fr Arctic
institution Open Polar
collection theses.fr
op_collection_id ftstarfr
language French
topic Vagues
Banquise
Modélisation
Zone Marginale de Glace
Waves
Sea ice
Model
Marginal Ice Zone
551.343
spellingShingle Vagues
Banquise
Modélisation
Zone Marginale de Glace
Waves
Sea ice
Model
Marginal Ice Zone
551.343
Boutin, Guillaume
Interactions vagues-banquise en zones polaires
topic_facet Vagues
Banquise
Modélisation
Zone Marginale de Glace
Waves
Sea ice
Model
Marginal Ice Zone
551.343
description La banquise, qui couvre de larges étendues de l’océan près des pôles, est une composante majeure du climat. Le réchauffement de la planète entraîne sa fonte massive, en particulier en Arctique.Là où l’extension de la banquise diminue, l’augmentation du fetch est associée à une élévation de la hauteur des vagues, laissant penser que les effets liés aux interactions vagues-glace pourraient s’accroître dans le futur. L’évolution rapide de la banquise associée à l’intensification des activités humaines dans les régions polaires pressent à améliorer notre connaissance de ces interactions.La banquise atténue les vagues. Elles peuvent néanmoins s’y propager et briser la glace sur de longues distances. L’atténuation dépend des propriétés de la glace comme l’épaisseur, la taille des plaques. Les plaques de glace une fois cassées sont plus susceptibles de dériver et de fondre. En outre, lors de l’atténuation, les plaques sont poussées dans la direction de propagation des vagues.Une représentation simple de la banquise dans un modèle de vagues intégrant une distribution de la taille des plaques nous a permis de montrer l’importance des mécanismes dissipatifs dans l’atténuation, notamment ceux induits par la flexion de la glace.Après avoir été validé, ce modèle a été couplé à un modèle de glace. La taille des plaques est échangée et utilisée dans le calcul de la fonte latérale. La force exercée par les vagues sur la banquise est également envoyée depuis le modèle de vagues. En été, cette force compacte la glace et tend à diminuer la fonte, augmentant significativement la température et la salinité des eaux de surface au bord de la banquise. Sea ice, which covers most of the ocean near the poles, is a key component of the climate system. Global warming is driving its massive melting, especially in the Arctic. Where sea ice cover decreases, fetch increases leading to more energetic sea states. This means potentially enhanced wavesice interactions effects in the future. The quick evolution of sea ice extent and volume combined with the intensification of human activities in polar regions urge us to improve our understanding of waves-ice interactions.Sea ice attenuates waves. They can however propagate through it and break it far into the ice cover. Attenuation depends on ice properties such as floe size, thickness, etc. Once broken, resulting floes are more likely to drift and melt. In addition, wave attenuation yields a force which pushes the floes in the direction of wave propagation.A simplified representation of sea ice, including a floe size distribution, has been incorporated in a wave model.It allows us to show the important contribution of dissipative mechanisms in the wave attenuation, especially those induced by the bending of the ice plates. After validation, the modified wave model is coupled to an ice model. The floe size distribution is exchanged in the coupled framework and used in ice lateral melt computation. The force exerted by the waves on the ice floes is sent from the wave model and is shown to compact sea ice in summer. This reduces the melting and significantly increases the temperature and salinity in the surface ocean close to the ice edge.
author2 Brest
Ardhuin, Fabrice
format Thesis
author Boutin, Guillaume
author_facet Boutin, Guillaume
author_sort Boutin, Guillaume
title Interactions vagues-banquise en zones polaires
title_short Interactions vagues-banquise en zones polaires
title_full Interactions vagues-banquise en zones polaires
title_fullStr Interactions vagues-banquise en zones polaires
title_full_unstemmed Interactions vagues-banquise en zones polaires
title_sort interactions vagues-banquise en zones polaires
publishDate 2018
url http://www.theses.fr/2018BRES0050/document
geographic Arctic
geographic_facet Arctic
genre Arctic
Arctique*
banquise
Global warming
Sea ice
genre_facet Arctic
Arctique*
banquise
Global warming
Sea ice
op_relation http://www.theses.fr/2018BRES0050/document
op_rights Open Access
http://purl.org/eprint/accessRights/OpenAccess
_version_ 1766350140997632000