Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity

Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out...

Full description

Bibliographic Details
Main Authors: Williams, Robert, Hedley, Sharon L., Hammond, Philip Steven
Other Authors: University of St Andrews. School of Biology, University of St Andrews. Sea Mammal Research Unit, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Scottish Oceans Institute, University of St Andrews. Centre for Research into Ecological & Environmental Modelling
Format: Article in Journal/Newspaper
Language:English
Published: 2012
Subjects:
QL
Online Access:http://hdl.handle.net/10023/2857
http://www.scopus.com/inward/record.url?scp=33745892375&partnerID=8YFLogxK
http://www.ecologyandsociety.org/vol11/iss1/art1/
Description
Summary:Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out of reach for researchers in many countries, which nonetheless grapple with problems of conservation of endangered species, by-catch of small cetaceans in commercial fisheries, and progression toward ecosystem-based fisheries management. Recently developed spatial modeling techniques show promise for estimating wildlife abundance using non-randomized surveys, but have yet to receive much field-testing in areas where designed surveys have also been conducted. Effort and sightings data were collected along 9 650 km of transects aboard ships of opportunity in the Southern Ocean during the austral summers of 2000 - 2001 and 2001 - 2002. Generalized additive models with generalized cross-validation were used to express heterogeneity of cetacean sightings as functions of spatial covariates. Models were used to map predicted densities and to estimate abundance of humpback, minke, and fin whales in the Drake Passage and along the Antarctic Peninsula. All species' distribution maps showed strong density gradients, which were robust to jackknife resampling when each of 14 trips was removed sequentially with replacement. Looped animations of model predictions of whale density illustrate uncertainty in distribution estimates in a way that is informative to non-scientists. The best abundance estimate for humpback whales was 1 829 (95% CI: 978- 3 422). Abundance of fin whales was 4 487 ( 95% CI: 1 326 - 15 179) and minke whales was 1,544 ( 95% CI: 1,221 - 1,953). These estimates agreed roughly with those reported from a designed survey conducted in the region during the previous austral summer. These estimates assumed that all animals on the trackline were detected, but preliminary results suggest that any negative bias due to ...