Suppressed basal melting in the eastern Thwaites Glacier grounding zone

Funding: This work is from the MELT project, a component of the International Thwaites Glacier Collaboration (ITGC). Support from the National Science Foundation (NSF, grant no. 1739003) and the Natural Environment Research Council (NERC, grant no. NE/S006656/1). Logistics provided by NSF U.S. Antar...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Davis, Peter E.D., Nicholls, Keith W., Holland, David M., Schmidt, Britney E., Washam, Peter, Riverman, Kiya L., Arthern, Robert J., Vankova, Irena, Eayrs, Clare, Smith, James A., Anker, Paul G.D., Mullen, Andrew D., Dichek, Daniel, Lawrence, Justin D., Meister, Matthew M., Clyne, Elisabeth, Baskinski-Ferris, Aurora, Rignot, Eric, Queste, Bastien Y., Boehme, Lars, Heywood, Karen J, Anandakrishnan, Sridhar, Makinson, Keith
Other Authors: NERC, University of St Andrews.School of Biology, University of St Andrews.Sea Mammal Research Unit, University of St Andrews.Scottish Oceans Institute, University of St Andrews.Marine Alliance for Science & Technology Scotland
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
MCC
GE
Online Access:https://hdl.handle.net/10023/27000
https://doi.org/10.1038/s41586-022-05586-0
id ftstandrewserep:oai:research-repository.st-andrews.ac.uk:10023/27000
record_format openpolar
institution Open Polar
collection University of St Andrews: Digital Research Repository
op_collection_id ftstandrewserep
language English
topic GE Environmental Sciences
3rd-DAS
SDG 14 - Life Below Water
MCC
GE
spellingShingle GE Environmental Sciences
3rd-DAS
SDG 14 - Life Below Water
MCC
GE
Davis, Peter E.D.
Nicholls, Keith W.
Holland, David M.
Schmidt, Britney E.
Washam, Peter
Riverman, Kiya L.
Arthern, Robert J.
Vankova, Irena
Eayrs, Clare
Smith, James A.
Anker, Paul G.D.
Mullen, Andrew D.
Dichek, Daniel
Lawrence, Justin D.
Meister, Matthew M.
Clyne, Elisabeth
Baskinski-Ferris, Aurora
Rignot, Eric
Queste, Bastien Y.
Boehme, Lars
Heywood, Karen J
Anandakrishnan, Sridhar
Makinson, Keith
Suppressed basal melting in the eastern Thwaites Glacier grounding zone
topic_facet GE Environmental Sciences
3rd-DAS
SDG 14 - Life Below Water
MCC
GE
description Funding: This work is from the MELT project, a component of the International Thwaites Glacier Collaboration (ITGC). Support from the National Science Foundation (NSF, grant no. 1739003) and the Natural Environment Research Council (NERC, grant no. NE/S006656/1). Logistics provided by NSF U.S. Antarctic Program and NERC British Antarctic Survey. The ship-based CTD data were supported by the ITGC TARSAN project (NERC grant nos. NE/S006419/1 and NE/S006591/1; NSF grant no. 1929991). ITGC contribution no. ITGC 047. Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica1,2,3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. Peer reviewed
author2 NERC
University of St Andrews.School of Biology
University of St Andrews.Sea Mammal Research Unit
University of St Andrews.Scottish Oceans Institute
University of St Andrews.Marine Alliance for Science & Technology Scotland
format Article in Journal/Newspaper
author Davis, Peter E.D.
Nicholls, Keith W.
Holland, David M.
Schmidt, Britney E.
Washam, Peter
Riverman, Kiya L.
Arthern, Robert J.
Vankova, Irena
Eayrs, Clare
Smith, James A.
Anker, Paul G.D.
Mullen, Andrew D.
Dichek, Daniel
Lawrence, Justin D.
Meister, Matthew M.
Clyne, Elisabeth
Baskinski-Ferris, Aurora
Rignot, Eric
Queste, Bastien Y.
Boehme, Lars
Heywood, Karen J
Anandakrishnan, Sridhar
Makinson, Keith
author_facet Davis, Peter E.D.
Nicholls, Keith W.
Holland, David M.
Schmidt, Britney E.
Washam, Peter
Riverman, Kiya L.
Arthern, Robert J.
Vankova, Irena
Eayrs, Clare
Smith, James A.
Anker, Paul G.D.
Mullen, Andrew D.
Dichek, Daniel
Lawrence, Justin D.
Meister, Matthew M.
Clyne, Elisabeth
Baskinski-Ferris, Aurora
Rignot, Eric
Queste, Bastien Y.
Boehme, Lars
Heywood, Karen J
Anandakrishnan, Sridhar
Makinson, Keith
author_sort Davis, Peter E.D.
title Suppressed basal melting in the eastern Thwaites Glacier grounding zone
title_short Suppressed basal melting in the eastern Thwaites Glacier grounding zone
title_full Suppressed basal melting in the eastern Thwaites Glacier grounding zone
title_fullStr Suppressed basal melting in the eastern Thwaites Glacier grounding zone
title_full_unstemmed Suppressed basal melting in the eastern Thwaites Glacier grounding zone
title_sort suppressed basal melting in the eastern thwaites glacier grounding zone
publishDate 2023
url https://hdl.handle.net/10023/27000
https://doi.org/10.1038/s41586-022-05586-0
genre Antarc*
Antarctic
British Antarctic Survey
Ice Sheet
Ice Shelf
Thwaites Glacier
genre_facet Antarc*
Antarctic
British Antarctic Survey
Ice Sheet
Ice Shelf
Thwaites Glacier
op_relation Nature
278412265
20def2f5-c3f0-4fed-9076-a84bd4e20401
85148115119
Davis , P E D , Nicholls , K W , Holland , D M , Schmidt , B E , Washam , P , Riverman , K L , Arthern , R J , Vankova , I , Eayrs , C , Smith , J A , Anker , P G D , Mullen , A D , Dichek , D , Lawrence , J D , Meister , M M , Clyne , E , Baskinski-Ferris , A , Rignot , E , Queste , B Y , Boehme , L , Heywood , K J , Anandakrishnan , S & Makinson , K 2023 , ' Suppressed basal melting in the eastern Thwaites Glacier grounding zone ' , Nature , vol. 614 , pp. 479-485 . https://doi.org/10.1038/s41586-022-05586-0
0028-0836
https://hdl.handle.net/10023/27000
doi:10.1038/s41586-022-05586-0
NE/S006591/1
op_rights Copyright © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
op_doi https://doi.org/10.1038/s41586-022-05586-0
container_title Nature
container_volume 614
container_issue 7948
container_start_page 479
op_container_end_page 485
_version_ 1810492149346598912
spelling ftstandrewserep:oai:research-repository.st-andrews.ac.uk:10023/27000 2024-09-15T17:44:31+00:00 Suppressed basal melting in the eastern Thwaites Glacier grounding zone Davis, Peter E.D. Nicholls, Keith W. Holland, David M. Schmidt, Britney E. Washam, Peter Riverman, Kiya L. Arthern, Robert J. Vankova, Irena Eayrs, Clare Smith, James A. Anker, Paul G.D. Mullen, Andrew D. Dichek, Daniel Lawrence, Justin D. Meister, Matthew M. Clyne, Elisabeth Baskinski-Ferris, Aurora Rignot, Eric Queste, Bastien Y. Boehme, Lars Heywood, Karen J Anandakrishnan, Sridhar Makinson, Keith NERC University of St Andrews.School of Biology University of St Andrews.Sea Mammal Research Unit University of St Andrews.Scottish Oceans Institute University of St Andrews.Marine Alliance for Science & Technology Scotland 2023-02-16T16:30:05Z 21 14658355 application/pdf https://hdl.handle.net/10023/27000 https://doi.org/10.1038/s41586-022-05586-0 eng eng Nature 278412265 20def2f5-c3f0-4fed-9076-a84bd4e20401 85148115119 Davis , P E D , Nicholls , K W , Holland , D M , Schmidt , B E , Washam , P , Riverman , K L , Arthern , R J , Vankova , I , Eayrs , C , Smith , J A , Anker , P G D , Mullen , A D , Dichek , D , Lawrence , J D , Meister , M M , Clyne , E , Baskinski-Ferris , A , Rignot , E , Queste , B Y , Boehme , L , Heywood , K J , Anandakrishnan , S & Makinson , K 2023 , ' Suppressed basal melting in the eastern Thwaites Glacier grounding zone ' , Nature , vol. 614 , pp. 479-485 . https://doi.org/10.1038/s41586-022-05586-0 0028-0836 https://hdl.handle.net/10023/27000 doi:10.1038/s41586-022-05586-0 NE/S006591/1 Copyright © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. GE Environmental Sciences 3rd-DAS SDG 14 - Life Below Water MCC GE Journal article 2023 ftstandrewserep https://doi.org/10.1038/s41586-022-05586-0 2024-08-28T00:12:18Z Funding: This work is from the MELT project, a component of the International Thwaites Glacier Collaboration (ITGC). Support from the National Science Foundation (NSF, grant no. 1739003) and the Natural Environment Research Council (NERC, grant no. NE/S006656/1). Logistics provided by NSF U.S. Antarctic Program and NERC British Antarctic Survey. The ship-based CTD data were supported by the ITGC TARSAN project (NERC grant nos. NE/S006419/1 and NE/S006591/1; NSF grant no. 1929991). ITGC contribution no. ITGC 047. Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica1,2,3. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland4, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre2,3,5. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat3,6, both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base7,8, resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. Peer reviewed Article in Journal/Newspaper Antarc* Antarctic British Antarctic Survey Ice Sheet Ice Shelf Thwaites Glacier University of St Andrews: Digital Research Repository Nature 614 7948 479 485