Apatite : a U-Pb thermochronometer or geochronometer?

The Ministry of Mineral Resources (MMR) of the Greenland Government is acknowledged for supporting the field and analytical work in the Maniitsoq region, SW Greenland. Apatite is an accessory mineral that is frequently found in both igneous and clastic sedimentary rocks. It is conventionally conside...

Full description

Bibliographic Details
Published in:Lithos
Main Authors: Kirkland, C. L., Yakymchuk, C., Szilas, K., Evans, N., Hollis, J., McDonald, B., Gardiner, N. J.
Other Authors: University of St Andrews. School of Earth & Environmental Sciences
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
DAS
QE
Online Access:http://hdl.handle.net/10023/18484
https://doi.org/10.1016/j.lithos.2018.08.007
https://www.sciencedirect.com/science/article/pii/S0024493718302809?via%3Dihub#s0140
Description
Summary:The Ministry of Mineral Resources (MMR) of the Greenland Government is acknowledged for supporting the field and analytical work in the Maniitsoq region, SW Greenland. Apatite is an accessory mineral that is frequently found in both igneous and clastic sedimentary rocks. It is conventionally considered to be characterized by a closure temperature range between 375 and 600 °C and hence has been employed to address mid-temperature thermochronology questions relevant to the reconstruction of thermal events in the middle to lower crust. However, questions remain as to whether apatite faithfully records thermally-activated volume diffusion profiles, or rather is influenced by recrystallization and new growth processes. We present a case study of two apatite samples from the Akia Terrane in Greenland that help chart some of the post magmatic history of this region. Apatite in a tonalitic gneiss has distinct U-enriched rims and its U-Pb apparent ages correlate with Mn chemistry, with a high Mn group yielding an age of c. 2813 Ma. The U-Pb and trace element chemistry and morphology support an interpretation in which these apatite crystals are originally igneous and record cooling after metamorphism, with subsequent generation of discrete new rims. Epidote observed in the sample implies a <600 °C fluid infiltration event associated with apatite rims. The second sample, from a granitic leucosome, contains apparently homogeneous apatite, however U-Pb analyses define two distinct discordia arrays with different common Pb components. An older, c. 2490 Ma, component is associated with elevated Sr, whereas a younger, c. 1800 Ma, component has lower Sr concentration. A depth profile reveals an older core with progressively younger ages towards a compositionally discrete late Paleoproterozoic rim. The chemical and age profiles do not directly correspond, implying different diffusion rates between trace elements and U and Pb. The variation in core ages is interpreted to reflect radiogenic-Pb loss from a metamorphic ...