A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections

Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here, we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and origi...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Gafar, Natasha, Schulz, Kai G
Format: Article in Journal/Newspaper
Language:unknown
Published: ePublications@SCU 2018
Subjects:
Online Access:https://epubs.scu.edu.au/esm_pubs/3627
https://doi.org/10.5194/bg-15-3541-2018
id ftsoutherncu:oai:epubs.scu.edu.au:esm_pubs-4657
record_format openpolar
spelling ftsoutherncu:oai:epubs.scu.edu.au:esm_pubs-4657 2023-05-15T13:36:09+02:00 A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections Gafar, Natasha Schulz, Kai G 2018-01-01T08:00:00Z https://epubs.scu.edu.au/esm_pubs/3627 https://doi.org/10.5194/bg-15-3541-2018 unknown ePublications@SCU School of Environment, Science and Engineering Papers Environmental Sciences article 2018 ftsoutherncu https://doi.org/10.5194/bg-15-3541-2018 2019-08-06T13:19:14Z Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here, we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and original data for Emiliania huxleyi, and compare the projections with those for Gephyrocapsa oceanica. Based on our analysis, the two most common bloomforming species in present-day coccolithophore communities appear to be adapted for a similar fundamental light niche but slightly different ones for temperature and CO2, with E. huxleyi having a tolerance to lower temperatures and higher CO2 levels than G. oceanica. Based on growth rates, a dominance of E. huxleyi over G. oceanica is projected below temperatures of 22 ◦C at current atmospheric CO2 levels. This is similar to a global surface sediment compilation of E. huxleyi and G. oceanica coccolith abundances suggesting temperature-dependent dominance shifts. For a future Representative Concentration Pathway (RCP) 8.5 climate change scenario (1000 µatm f CO2), we project a CO2 driven niche contraction for G. oceanica to regions of even higher temperatures. However, the greater sensitivity of G. oceanica to increasing CO2 is partially mitigated by increasing temperatures. Finally, we compare satellite-derived particulate inorganic carbon estimates in the surface ocean with a recently proposed metric for potential coccolithophore success on the community level, i.e. the temperature-, light- and carbonatechemistry-dependent CaCO3 production potential (CCPP). Based on E. huxleyi alone, as there was interestingly a better correlation than when in combination with G. oceanica, and excluding the Antarctic province from the analysis, we found a good correlation between CCPP and satellite-derived particulate inorganic carbon (PIC) with an R2 of 0.73, p < 0.01 and a slope of 1.03 for austral winter/boreal summer and an R2 of 0.85, p < 0.01 and a slope of 0.32 for austral summer/boreal winter. Article in Journal/Newspaper Antarc* Antarctic Southern Cross University: epublications@SCU Antarctic Austral The Antarctic Biogeosciences 15 11 3541 3560
institution Open Polar
collection Southern Cross University: epublications@SCU
op_collection_id ftsoutherncu
language unknown
topic Environmental Sciences
spellingShingle Environmental Sciences
Gafar, Natasha
Schulz, Kai G
A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
topic_facet Environmental Sciences
description Coccolithophore responses to changes in carbonate chemistry speciation such as CO2 and H+ are highly modulated by light intensity and temperature. Here, we fit an analytical equation, accounting for simultaneous changes in carbonate chemistry speciation, light and temperature, to published and original data for Emiliania huxleyi, and compare the projections with those for Gephyrocapsa oceanica. Based on our analysis, the two most common bloomforming species in present-day coccolithophore communities appear to be adapted for a similar fundamental light niche but slightly different ones for temperature and CO2, with E. huxleyi having a tolerance to lower temperatures and higher CO2 levels than G. oceanica. Based on growth rates, a dominance of E. huxleyi over G. oceanica is projected below temperatures of 22 ◦C at current atmospheric CO2 levels. This is similar to a global surface sediment compilation of E. huxleyi and G. oceanica coccolith abundances suggesting temperature-dependent dominance shifts. For a future Representative Concentration Pathway (RCP) 8.5 climate change scenario (1000 µatm f CO2), we project a CO2 driven niche contraction for G. oceanica to regions of even higher temperatures. However, the greater sensitivity of G. oceanica to increasing CO2 is partially mitigated by increasing temperatures. Finally, we compare satellite-derived particulate inorganic carbon estimates in the surface ocean with a recently proposed metric for potential coccolithophore success on the community level, i.e. the temperature-, light- and carbonatechemistry-dependent CaCO3 production potential (CCPP). Based on E. huxleyi alone, as there was interestingly a better correlation than when in combination with G. oceanica, and excluding the Antarctic province from the analysis, we found a good correlation between CCPP and satellite-derived particulate inorganic carbon (PIC) with an R2 of 0.73, p < 0.01 and a slope of 1.03 for austral winter/boreal summer and an R2 of 0.85, p < 0.01 and a slope of 0.32 for austral summer/boreal winter.
format Article in Journal/Newspaper
author Gafar, Natasha
Schulz, Kai G
author_facet Gafar, Natasha
Schulz, Kai G
author_sort Gafar, Natasha
title A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
title_short A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
title_full A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
title_fullStr A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
title_full_unstemmed A three-dimensional niche comparison of Emiliania huxleyi and Gephyrocapsa oceanica: reconciling observations with projections
title_sort three-dimensional niche comparison of emiliania huxleyi and gephyrocapsa oceanica: reconciling observations with projections
publisher ePublications@SCU
publishDate 2018
url https://epubs.scu.edu.au/esm_pubs/3627
https://doi.org/10.5194/bg-15-3541-2018
geographic Antarctic
Austral
The Antarctic
geographic_facet Antarctic
Austral
The Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source School of Environment, Science and Engineering Papers
op_doi https://doi.org/10.5194/bg-15-3541-2018
container_title Biogeosciences
container_volume 15
container_issue 11
container_start_page 3541
op_container_end_page 3560
_version_ 1766074990400110592