On the meridional circulation and balance of momentum in the Southern Ocean of POP

pThe circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integra...

Full description

Bibliographic Details
Published in:Ocean Dynamics
Main Authors: Olbers, D., Ivchenko, V.O.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2001
Subjects:
Online Access:https://eprints.soton.ac.uk/50748/
http://www.springerlink.com/content/8f604t61wjcg7d4n/?p=54abe32e0a074171b0dee63c493c7f2a&pi=3
id ftsouthampton:oai:eprints.soton.ac.uk:50748
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:50748 2023-07-30T04:03:12+02:00 On the meridional circulation and balance of momentum in the Southern Ocean of POP Olbers, D. Ivchenko, V.O. 2001-12 https://eprints.soton.ac.uk/50748/ http://www.springerlink.com/content/8f604t61wjcg7d4n/?p=54abe32e0a074171b0dee63c493c7f2a&pi=3 unknown Olbers, D. and Ivchenko, V.O. (2001) On the meridional circulation and balance of momentum in the Southern Ocean of POP. Ocean Dynamics, 52 (2), 79-93. (doi:10.1007/s10236-001-0010-3 <http://dx.doi.org/10.1007/s10236-001-0010-3>). Article PeerReviewed 2001 ftsouthampton https://doi.org/10.1007/s10236-001-0010-3 2023-07-09T20:55:00Z pThe circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integrated state involve transient and standing eddies. The meridional circulation is presented in terms of the Eulerian, eddy-induced, and residual streamfunctions. It is shown that the splitting of the meridional circulation into Ekman and geostrophic transports and the component induced by subgrid and Reynolds stresses is identical to a particular form of the zonally integrated balance of zonal momentum. In this balance, the eddy-induced streamfunctions represent the interfacial form stresses by transient and standing eddies and the residual streamfunction represents the acceleration of the zonal current by density fluxes in a zonally integrated frame. The latter acceleration term is directly related to the surface flux of density and interior fluxes due to the resolved and unresolved eddies. The eddy-induced circulation is extremely vigorous in POP. In the upper ocean a shallow circulation, reversed in comparison to the Deacon cell and mainly due to standing eddies, appears to the north of Drake Passage latitudes, and in the Drake Passage belt of latitudes a deep-reaching cell is induced by transient eddies. In the resulting residual circulation the Deacon cell is largely cancelled and the residual advection of the zonal mean potential density is balanced by diapycnal eddy and subgrid fluxes which are strong in the upper few hundred meters but small in the ocean interior. The balance of zonal momentum is consistent with other eddy-resolving models; a new aspect is the clear identification of density effects in the zonally integrated balance. We show that the wind stress and the stress induced by the residual circulation drive the eastward current, whereas both eddy species result in a braking. Finally, we extend the ... Article in Journal/Newspaper Drake Passage Southern Ocean University of Southampton: e-Prints Soton Southern Ocean Drake Passage Deacon ENVELOPE(-59.987,-59.987,-73.248,-73.248) Ocean Dynamics 52 2 79 93
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language unknown
description pThe circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integrated state involve transient and standing eddies. The meridional circulation is presented in terms of the Eulerian, eddy-induced, and residual streamfunctions. It is shown that the splitting of the meridional circulation into Ekman and geostrophic transports and the component induced by subgrid and Reynolds stresses is identical to a particular form of the zonally integrated balance of zonal momentum. In this balance, the eddy-induced streamfunctions represent the interfacial form stresses by transient and standing eddies and the residual streamfunction represents the acceleration of the zonal current by density fluxes in a zonally integrated frame. The latter acceleration term is directly related to the surface flux of density and interior fluxes due to the resolved and unresolved eddies. The eddy-induced circulation is extremely vigorous in POP. In the upper ocean a shallow circulation, reversed in comparison to the Deacon cell and mainly due to standing eddies, appears to the north of Drake Passage latitudes, and in the Drake Passage belt of latitudes a deep-reaching cell is induced by transient eddies. In the resulting residual circulation the Deacon cell is largely cancelled and the residual advection of the zonal mean potential density is balanced by diapycnal eddy and subgrid fluxes which are strong in the upper few hundred meters but small in the ocean interior. The balance of zonal momentum is consistent with other eddy-resolving models; a new aspect is the clear identification of density effects in the zonally integrated balance. We show that the wind stress and the stress induced by the residual circulation drive the eastward current, whereas both eddy species result in a braking. Finally, we extend the ...
format Article in Journal/Newspaper
author Olbers, D.
Ivchenko, V.O.
spellingShingle Olbers, D.
Ivchenko, V.O.
On the meridional circulation and balance of momentum in the Southern Ocean of POP
author_facet Olbers, D.
Ivchenko, V.O.
author_sort Olbers, D.
title On the meridional circulation and balance of momentum in the Southern Ocean of POP
title_short On the meridional circulation and balance of momentum in the Southern Ocean of POP
title_full On the meridional circulation and balance of momentum in the Southern Ocean of POP
title_fullStr On the meridional circulation and balance of momentum in the Southern Ocean of POP
title_full_unstemmed On the meridional circulation and balance of momentum in the Southern Ocean of POP
title_sort on the meridional circulation and balance of momentum in the southern ocean of pop
publishDate 2001
url https://eprints.soton.ac.uk/50748/
http://www.springerlink.com/content/8f604t61wjcg7d4n/?p=54abe32e0a074171b0dee63c493c7f2a&pi=3
long_lat ENVELOPE(-59.987,-59.987,-73.248,-73.248)
geographic Southern Ocean
Drake Passage
Deacon
geographic_facet Southern Ocean
Drake Passage
Deacon
genre Drake Passage
Southern Ocean
genre_facet Drake Passage
Southern Ocean
op_relation Olbers, D. and Ivchenko, V.O. (2001) On the meridional circulation and balance of momentum in the Southern Ocean of POP. Ocean Dynamics, 52 (2), 79-93. (doi:10.1007/s10236-001-0010-3 <http://dx.doi.org/10.1007/s10236-001-0010-3>).
op_doi https://doi.org/10.1007/s10236-001-0010-3
container_title Ocean Dynamics
container_volume 52
container_issue 2
container_start_page 79
op_container_end_page 93
_version_ 1772814156246810624