North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system

Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate re...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: De Vleeschouwer, David, Penman, Donald E., D'haenens, Simon, Wu, Fei, Westerhold, Thomas, Vahlenkamp, Maximilian, Cappelli, Carlotta, Agnini, Claudia, Kordesch, Wendy E.C., King, Daniel J., Van Der Ploeg, Robin, Palike, Heiko, Kirtland Turner, Sandra, Wilson, Paul, Norris, Richard D., Zachos, James C., Bohaty, Steven, Hull, Pincelli M.
Format: Article in Journal/Newspaper
Language:English
Published: 2023
Subjects:
Online Access:https://eprints.soton.ac.uk/477105/
https://eprints.soton.ac.uk/477105/1/Paleoceanog_and_Paleoclimatol_2023_De_Vleeschouwer_North_Atlantic_Drift_Sediments_Constrain_Eocene_Tidal_Dissipation_1_.pdf
id ftsouthampton:oai:eprints.soton.ac.uk:477105
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:477105 2024-05-12T08:07:14+00:00 North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system De Vleeschouwer, David Penman, Donald E. D'haenens, Simon Wu, Fei Westerhold, Thomas Vahlenkamp, Maximilian Cappelli, Carlotta Agnini, Claudia Kordesch, Wendy E.C. King, Daniel J. Van Der Ploeg, Robin Palike, Heiko Kirtland Turner, Sandra Wilson, Paul Norris, Richard D. Zachos, James C. Bohaty, Steven Hull, Pincelli M. 2023-02-09 text https://eprints.soton.ac.uk/477105/ https://eprints.soton.ac.uk/477105/1/Paleoceanog_and_Paleoclimatol_2023_De_Vleeschouwer_North_Atlantic_Drift_Sediments_Constrain_Eocene_Tidal_Dissipation_1_.pdf en English eng https://eprints.soton.ac.uk/477105/1/Paleoceanog_and_Paleoclimatol_2023_De_Vleeschouwer_North_Atlantic_Drift_Sediments_Constrain_Eocene_Tidal_Dissipation_1_.pdf De Vleeschouwer, David, Penman, Donald E., D'haenens, Simon, Wu, Fei, Westerhold, Thomas, Vahlenkamp, Maximilian, Cappelli, Carlotta, Agnini, Claudia, Kordesch, Wendy E.C., King, Daniel J., Van Der Ploeg, Robin, Palike, Heiko, Kirtland Turner, Sandra, Wilson, Paul, Norris, Richard D., Zachos, James C., Bohaty, Steven and Hull, Pincelli M. (2023) North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system. Paleoceanography and Paleoclimatology, 38 (2), [e2022PA004555]. (doi:10.1029/2022PA004555 <http://dx.doi.org/10.1029/2022PA004555>). cc_by_4 Article PeerReviewed 2023 ftsouthampton https://doi.org/10.1029/2022PA004555 2024-04-17T14:07:16Z Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well-suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408–U1410 are highly complex with several hiatuses. Here, we built a two-site composite and constructed a conservative age-depth model to provide a reliable chronology for this rhythmic, highly resolved (<1 kyr) sedimentary archive. Astronomical components (g-terms and precession constant) are extracted from proxy time-series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20-Myr intervals, and our results therefore provide constraints on g-term variability on shorter, million-year timescales. We also report first evidence that the g 4 –g 3 “grand eccentricity cycle” may have had a 1.2-Myr period around 41 Ma, contrary to its 2.4-Myr periodicity today. Our median precession constant estimate (51.28 ± 0.56″/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations. Article in Journal/Newspaper Newfoundland North Atlantic University of Southampton: e-Prints Soton Paleoceanography and Paleoclimatology 38 2
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language English
description Cyclostratigraphy and astrochronology are now at the forefront of geologic timekeeping. While this technique heavily relies on the accuracy of astronomical calculations, solar system chaos limits how far back astronomical calculations can be performed with confidence. High-resolution paleoclimate records with Milankovitch imprints now allow reversing the traditional cyclostratigraphic approach: Middle Eocene drift sediments from Newfoundland Ridge are well-suited for this purpose, due to high sedimentation rates and distinct lithological cycles. Per contra, the stratigraphies of Integrated Ocean Drilling Program Sites U1408–U1410 are highly complex with several hiatuses. Here, we built a two-site composite and constructed a conservative age-depth model to provide a reliable chronology for this rhythmic, highly resolved (<1 kyr) sedimentary archive. Astronomical components (g-terms and precession constant) are extracted from proxy time-series using two different techniques, producing consistent results. We find astronomical frequencies up to 4% lower than reported in astronomical solution La04. This solution, however, was smoothed over 20-Myr intervals, and our results therefore provide constraints on g-term variability on shorter, million-year timescales. We also report first evidence that the g 4 –g 3 “grand eccentricity cycle” may have had a 1.2-Myr period around 41 Ma, contrary to its 2.4-Myr periodicity today. Our median precession constant estimate (51.28 ± 0.56″/year) confirms earlier indicators of a relatively low rate of tidal dissipation in the Paleogene. Newfoundland Ridge drift sediments thus enable a reliable reconstruction of astronomical components at the limit of validity of current astronomical calculations, extracted from geologic data, providing a new target for the next generation of astronomical calculations.
format Article in Journal/Newspaper
author De Vleeschouwer, David
Penman, Donald E.
D'haenens, Simon
Wu, Fei
Westerhold, Thomas
Vahlenkamp, Maximilian
Cappelli, Carlotta
Agnini, Claudia
Kordesch, Wendy E.C.
King, Daniel J.
Van Der Ploeg, Robin
Palike, Heiko
Kirtland Turner, Sandra
Wilson, Paul
Norris, Richard D.
Zachos, James C.
Bohaty, Steven
Hull, Pincelli M.
spellingShingle De Vleeschouwer, David
Penman, Donald E.
D'haenens, Simon
Wu, Fei
Westerhold, Thomas
Vahlenkamp, Maximilian
Cappelli, Carlotta
Agnini, Claudia
Kordesch, Wendy E.C.
King, Daniel J.
Van Der Ploeg, Robin
Palike, Heiko
Kirtland Turner, Sandra
Wilson, Paul
Norris, Richard D.
Zachos, James C.
Bohaty, Steven
Hull, Pincelli M.
North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
author_facet De Vleeschouwer, David
Penman, Donald E.
D'haenens, Simon
Wu, Fei
Westerhold, Thomas
Vahlenkamp, Maximilian
Cappelli, Carlotta
Agnini, Claudia
Kordesch, Wendy E.C.
King, Daniel J.
Van Der Ploeg, Robin
Palike, Heiko
Kirtland Turner, Sandra
Wilson, Paul
Norris, Richard D.
Zachos, James C.
Bohaty, Steven
Hull, Pincelli M.
author_sort De Vleeschouwer, David
title North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
title_short North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
title_full North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
title_fullStr North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
title_full_unstemmed North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system
title_sort north atlantic drift sediments constrain eocene tidal dissipation and the evolution of the earth‐moon system
publishDate 2023
url https://eprints.soton.ac.uk/477105/
https://eprints.soton.ac.uk/477105/1/Paleoceanog_and_Paleoclimatol_2023_De_Vleeschouwer_North_Atlantic_Drift_Sediments_Constrain_Eocene_Tidal_Dissipation_1_.pdf
genre Newfoundland
North Atlantic
genre_facet Newfoundland
North Atlantic
op_relation https://eprints.soton.ac.uk/477105/1/Paleoceanog_and_Paleoclimatol_2023_De_Vleeschouwer_North_Atlantic_Drift_Sediments_Constrain_Eocene_Tidal_Dissipation_1_.pdf
De Vleeschouwer, David, Penman, Donald E., D'haenens, Simon, Wu, Fei, Westerhold, Thomas, Vahlenkamp, Maximilian, Cappelli, Carlotta, Agnini, Claudia, Kordesch, Wendy E.C., King, Daniel J., Van Der Ploeg, Robin, Palike, Heiko, Kirtland Turner, Sandra, Wilson, Paul, Norris, Richard D., Zachos, James C., Bohaty, Steven and Hull, Pincelli M. (2023) North Atlantic drift sediments constrain Eocene tidal dissipation and the evolution of the Earth‐Moon system. Paleoceanography and Paleoclimatology, 38 (2), [e2022PA004555]. (doi:10.1029/2022PA004555 <http://dx.doi.org/10.1029/2022PA004555>).
op_rights cc_by_4
op_doi https://doi.org/10.1029/2022PA004555
container_title Paleoceanography and Paleoclimatology
container_volume 38
container_issue 2
_version_ 1798849819694858240