Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic

The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slo...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Holliday, N. Penny, Bersch, Manfred, Berx, Barbara, Chafik, Léon, Cunningham, Stuart, Florindo-lópez, Cristian, Hátún, Hjálmar, Johns, William, Josey, Simon A., Larsen, Karin Margretha H., Mulet, Sandrine, Oltmanns, Marilena, Reverdin, Gilles, Rossby, Tom, Thierry, Virginie, Valdimarsson, Hedinn, Yashayaev, Igor
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://eprints.soton.ac.uk/437874/
https://eprints.soton.ac.uk/437874/1/s41467_020_14474_y.pdf
Description
Summary:The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.