A long-term, high-latitude record of Eocene hydrological change in the Greenland region

A range of proxy approaches have been used to reconstruct short-term changes to Earth's hydrological cycle during the early Eocene hyperthermals. However, little is known about the response of Earth's hydrological and biogeochemical systems to long-term Cenozoic cooling, which began follow...

Full description

Bibliographic Details
Published in:Palaeogeography, Palaeoclimatology, Palaeoecology
Main Authors: Inglis, Gordon N., Carmichael, Matthew J., Farnsworth, Alexander, Lunt, Daniel J., Pancost, Richard D.
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://eprints.soton.ac.uk/437523/
id ftsouthampton:oai:eprints.soton.ac.uk:437523
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:437523 2023-07-30T04:03:14+02:00 A long-term, high-latitude record of Eocene hydrological change in the Greenland region Inglis, Gordon N. Carmichael, Matthew J. Farnsworth, Alexander Lunt, Daniel J. Pancost, Richard D. 2020-01-01 https://eprints.soton.ac.uk/437523/ English eng Inglis, Gordon N., Carmichael, Matthew J., Farnsworth, Alexander, Lunt, Daniel J. and Pancost, Richard D. (2020) A long-term, high-latitude record of Eocene hydrological change in the Greenland region. Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 1-13, [109378]. (doi:10.1016/j.palaeo.2019.109378 <http://dx.doi.org/10.1016/j.palaeo.2019.109378>). Article PeerReviewed 2020 ftsouthampton https://doi.org/10.1016/j.palaeo.2019.109378 2023-07-09T22:34:16Z A range of proxy approaches have been used to reconstruct short-term changes to Earth's hydrological cycle during the early Eocene hyperthermals. However, little is known about the response of Earth's hydrological and biogeochemical systems to long-term Cenozoic cooling, which began following the Early Eocene Climatic Optimum (53.3 – 49.4 million years ago; Ma). Here, we use the molecular distribution and isotopic composition of terrestrial biomarkers preserved in marine sediments of ODP Site 913, East Greenland, to develop a long-term record of high-latitude hydrological change between 50 and 34 Ma. There is a marked decline in the concentration of conifer-derived diterpenoids and angiosperm-derived triterpenoids during the Eocene. As the input of wind-blown conifer pollen remains stable during this interval, this implies that decreasing di- and triterpenoid concentrations reflect declining influence of fluvial inputs – and perhaps terrestrial runoff – throughout the Eocene. Branched GDGTs and bacterial-derived hopanes indicate an increased input of soil- and kerogen-derived organic matter, respectively, after 38 Ma. This coincides with evidence for ice rafted debris and suggests input of organic matter via glacial processes. This also implies some continental glaciation occurred on East Greenland in the middle-to-late Eocene. Leaf wax hydrogen isotopes extending throughout this section – the first such long-term record from the Paleogene - indicate that precipitation δ2H was persistently higher than that of modern coastal Greenland, consistent with warmer ocean source waters and enhanced poleward moisture transport. Non-intuitively, however, this effect appears to have been smallest during the warmest part of the record, and higher δ2H values occur in the middle Eocene. Although interpretation of these hydrogen isotope trends is unclear, they clearly indicate – alongside the changes in biomarker abundances – a perturbed hydrological cycle through the Eocene in coastal Greenland. More long-term records are ... Article in Journal/Newspaper East Greenland Greenland University of Southampton: e-Prints Soton Greenland Palaeogeography, Palaeoclimatology, Palaeoecology 537 109378
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language English
description A range of proxy approaches have been used to reconstruct short-term changes to Earth's hydrological cycle during the early Eocene hyperthermals. However, little is known about the response of Earth's hydrological and biogeochemical systems to long-term Cenozoic cooling, which began following the Early Eocene Climatic Optimum (53.3 – 49.4 million years ago; Ma). Here, we use the molecular distribution and isotopic composition of terrestrial biomarkers preserved in marine sediments of ODP Site 913, East Greenland, to develop a long-term record of high-latitude hydrological change between 50 and 34 Ma. There is a marked decline in the concentration of conifer-derived diterpenoids and angiosperm-derived triterpenoids during the Eocene. As the input of wind-blown conifer pollen remains stable during this interval, this implies that decreasing di- and triterpenoid concentrations reflect declining influence of fluvial inputs – and perhaps terrestrial runoff – throughout the Eocene. Branched GDGTs and bacterial-derived hopanes indicate an increased input of soil- and kerogen-derived organic matter, respectively, after 38 Ma. This coincides with evidence for ice rafted debris and suggests input of organic matter via glacial processes. This also implies some continental glaciation occurred on East Greenland in the middle-to-late Eocene. Leaf wax hydrogen isotopes extending throughout this section – the first such long-term record from the Paleogene - indicate that precipitation δ2H was persistently higher than that of modern coastal Greenland, consistent with warmer ocean source waters and enhanced poleward moisture transport. Non-intuitively, however, this effect appears to have been smallest during the warmest part of the record, and higher δ2H values occur in the middle Eocene. Although interpretation of these hydrogen isotope trends is unclear, they clearly indicate – alongside the changes in biomarker abundances – a perturbed hydrological cycle through the Eocene in coastal Greenland. More long-term records are ...
format Article in Journal/Newspaper
author Inglis, Gordon N.
Carmichael, Matthew J.
Farnsworth, Alexander
Lunt, Daniel J.
Pancost, Richard D.
spellingShingle Inglis, Gordon N.
Carmichael, Matthew J.
Farnsworth, Alexander
Lunt, Daniel J.
Pancost, Richard D.
A long-term, high-latitude record of Eocene hydrological change in the Greenland region
author_facet Inglis, Gordon N.
Carmichael, Matthew J.
Farnsworth, Alexander
Lunt, Daniel J.
Pancost, Richard D.
author_sort Inglis, Gordon N.
title A long-term, high-latitude record of Eocene hydrological change in the Greenland region
title_short A long-term, high-latitude record of Eocene hydrological change in the Greenland region
title_full A long-term, high-latitude record of Eocene hydrological change in the Greenland region
title_fullStr A long-term, high-latitude record of Eocene hydrological change in the Greenland region
title_full_unstemmed A long-term, high-latitude record of Eocene hydrological change in the Greenland region
title_sort long-term, high-latitude record of eocene hydrological change in the greenland region
publishDate 2020
url https://eprints.soton.ac.uk/437523/
geographic Greenland
geographic_facet Greenland
genre East Greenland
Greenland
genre_facet East Greenland
Greenland
op_relation Inglis, Gordon N., Carmichael, Matthew J., Farnsworth, Alexander, Lunt, Daniel J. and Pancost, Richard D. (2020) A long-term, high-latitude record of Eocene hydrological change in the Greenland region. Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 1-13, [109378]. (doi:10.1016/j.palaeo.2019.109378 <http://dx.doi.org/10.1016/j.palaeo.2019.109378>).
op_doi https://doi.org/10.1016/j.palaeo.2019.109378
container_title Palaeogeography, Palaeoclimatology, Palaeoecology
container_volume 537
container_start_page 109378
_version_ 1772814192667000832