The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends

In addition to being of interest to ancient Greek and Roman historians, the site of Philippi, NE Greece, has long been noted in Quaternary circles for providing the longest continuous European pollen record, spanning the last one million years. Here the original age model is re-evaluated and a new m...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Tzedakis, P.C., Hooghiemstra, H., Pälike, H.
Format: Article in Journal/Newspaper
Language:English
Published: 2006
Subjects:
Online Access:https://eprints.soton.ac.uk/42224/
https://eprints.soton.ac.uk/42224/1/Tzedakis_etal_QSR2006.pdf
Description
Summary:In addition to being of interest to ancient Greek and Roman historians, the site of Philippi, NE Greece, has long been noted in Quaternary circles for providing the longest continuous European pollen record, spanning the last one million years. Here the original age model is re-evaluated and a new marine-terrestrial correlation is proposed. An astronomical calibration procedure, based on a correspondence between changes in certain vegetation elements and March and June perihelion configurations, suggests that the base of the sequence extends back to 1.35 million years ago. The revised chronological framework for the Tenaghi Philippon sequence provides an opportunity to examine the long-term behaviour of individual taxa and vegetation trends within the context of global climate changes. Comparisons reveal a close correspondence between the terrestrial and marine records, in terms of orbital and suborbital variability. However, joint time-frequency analysis of the arboreal pollen record shows that the obliquity and eccentricity/precession signals persist into the ‘100-kyr’ and ‘41-kyr’ worlds, respectively, suggesting the operation of additional climate mechanisms that are independent of high-latitude glacial–interglacial effects. Unlike ice core and marine sequences, no change in the magnitude of interglacial tree population expansions is observed after the Mid-Brunhes Event. Instead, the Tenaghi Philippon record suggests a major shift in the vegetational composition of interglacials after MIS 16, with the establishment of forests of reduced diversity and a ‘modern’ appearance.