Sedimentation and subsidence history of the Lomonosov Ridge

During the first scientific ocean drilling expedition to the Arctic Ocean (Arctic Coring Expedition [ACEX]; Integrated Ocean Drilling Program Expedition 302), four sites were drilled and cored atop the central part of the Lomonosov Ridge in the Arctic Ocean at ~88°N, 140°E (see Fig. F18 in the "...

Full description

Bibliographic Details
Main Authors: Moore, T.C., Backman, J., Moran, K., McInroy, D., Brinkhuis, H.K., Clemens, S., Cronin, T., Dickens, G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W., Kaminski, M., King, J., Koç, N., Martinez, N.C., Matthiessen, J., Onodera, J., O'Regan, M., Pälike, H., Rea, B.R., Rio, D., Sakamoto, T., Smith, D.C., Stein, R., St. John, K.E.K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M.
Other Authors: McInroy, D.B., Mayer, L.A.
Format: Conference Object
Language:English
Published: Integrated Ocean Drilling Program Management International, Inc 2006
Subjects:
Online Access:https://eprints.soton.ac.uk/41918/
https://eprints.soton.ac.uk/41918/1/302_105.PDF
http://www.ecord.org/exp/acex/vol302/EXP_REPT/CHAPTERS/302_105.PDF
Description
Summary:During the first scientific ocean drilling expedition to the Arctic Ocean (Arctic Coring Expedition [ACEX]; Integrated Ocean Drilling Program Expedition 302), four sites were drilled and cored atop the central part of the Lomonosov Ridge in the Arctic Ocean at ~88°N, 140°E (see Fig. F18 in the "Sites M0001–M0004" chapter). The ridge was rifted from the Eurasian continental margin at ~57 Ma (Fig. F1) (Jokat et al., 1992, 1995). Since the rifting event and the concurrent tilting and erosion of this sliver of the outer continental margin, the Lomonosov Ridge subsided while hemipelagic and pelagic sediments were deposited above the angular rifting unconformity (see Fig. F7A in the "Sites M0001–M0004" chapter). The sections recovered from the four sites drilled during Expedition 302 can be correlated using their seismic signature, physical properties (porosity, magnetic susceptibility, resistivity, and P-wave velocity), chemostratigraphy (ammonia content of pore waters), lithostratigraphy, and biostratigraphy. The lithostratigraphy of the composite section combined with biostratigraphy provides an insight into the complex history of deposition, erosion, and preservation of the biogenic fraction. Eventually, the ridge subsided to its present water depth as it drifted from the Eurasian margin. In this chapter, we compare a simple model of subsidence history with the sedimentary record recovered from atop the ridge.