Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface

The aim of this study was to improve our understanding of the marine iron cycle using a newly implemented technique to measure dissolved iron in seawater. The setting up of a flow-injection analyser with chemiluminescence detection (FIACL) for Fe(II) proved to be non-trivial. Extensive work was unde...

Full description

Bibliographic Details
Main Author: Nedelec, F.
Format: Thesis
Language:English
Published: 2006
Subjects:
Online Access:https://eprints.soton.ac.uk/41362/
https://eprints.soton.ac.uk/41362/1/Nedelec_2006_PhD.pdf
id ftsouthampton:oai:eprints.soton.ac.uk:41362
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:41362 2023-07-30T04:05:48+02:00 Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface Nedelec, F. 2006 text https://eprints.soton.ac.uk/41362/ https://eprints.soton.ac.uk/41362/1/Nedelec_2006_PhD.pdf en eng https://eprints.soton.ac.uk/41362/1/Nedelec_2006_PhD.pdf Nedelec, F. (2006) Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface. University of Southampton, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, Doctoral Thesis, 155pp. Thesis NonPeerReviewed 2006 ftsouthampton 2023-07-09T20:49:07Z The aim of this study was to improve our understanding of the marine iron cycle using a newly implemented technique to measure dissolved iron in seawater. The setting up of a flow-injection analyser with chemiluminescence detection (FIACL) for Fe(II) proved to be non-trivial. Extensive work was undertaken to solve problems relating to our limited level of understanding of the CL reaction, and the variable behaviour of the resins prepared to preconcentrate iron. An analyser for Fe(II)+(III) was optimised, and careful assessment of data demonstrated the high quality of the information interpreted in this study, from the Celtic Sea shelf edge (Northeast Atlantic), and from the North Scotia Ridge (Southern Ocean). The distribution of iron at the Celtic Sea shelf edge was examined, and was used to provide a conceptual framework for future studies. Dissolved Fe (< 0.4 µm) concentrations were measured in samples from nine vertical profiles taken across the continental slope (160 – 2950 m water depth). Dissolved iron concentrations varied between 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the iron distributions. The presence of elevated levels of dissolved Fe near the seafloor was consistent with release of Fe from in situ particulate organic matter remineralisation at two upper slope stations, and possibly of pore water release upon resuspension on shelf. Lateral transport of dissolved iron was evident in an intermediate nepheloid layer and its advection along an isopycnal. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. The possibility of iron limitation of phytoplankton at the shelf edge was not ruled out despite obvious depletion of nitrate. This study supports the view that export of dissolved iron laterally to the ocean’s interior from shelf and coastal ... Thesis Northeast Atlantic Southern Ocean University of Southampton: e-Prints Soton North Scotia Ridge ENVELOPE(-51.431,-51.431,-53.581,-53.581) Southern Ocean
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language English
description The aim of this study was to improve our understanding of the marine iron cycle using a newly implemented technique to measure dissolved iron in seawater. The setting up of a flow-injection analyser with chemiluminescence detection (FIACL) for Fe(II) proved to be non-trivial. Extensive work was undertaken to solve problems relating to our limited level of understanding of the CL reaction, and the variable behaviour of the resins prepared to preconcentrate iron. An analyser for Fe(II)+(III) was optimised, and careful assessment of data demonstrated the high quality of the information interpreted in this study, from the Celtic Sea shelf edge (Northeast Atlantic), and from the North Scotia Ridge (Southern Ocean). The distribution of iron at the Celtic Sea shelf edge was examined, and was used to provide a conceptual framework for future studies. Dissolved Fe (< 0.4 µm) concentrations were measured in samples from nine vertical profiles taken across the continental slope (160 – 2950 m water depth). Dissolved iron concentrations varied between 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the iron distributions. The presence of elevated levels of dissolved Fe near the seafloor was consistent with release of Fe from in situ particulate organic matter remineralisation at two upper slope stations, and possibly of pore water release upon resuspension on shelf. Lateral transport of dissolved iron was evident in an intermediate nepheloid layer and its advection along an isopycnal. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. The possibility of iron limitation of phytoplankton at the shelf edge was not ruled out despite obvious depletion of nitrate. This study supports the view that export of dissolved iron laterally to the ocean’s interior from shelf and coastal ...
format Thesis
author Nedelec, F.
spellingShingle Nedelec, F.
Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
author_facet Nedelec, F.
author_sort Nedelec, F.
title Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
title_short Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
title_full Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
title_fullStr Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
title_full_unstemmed Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
title_sort implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface
publishDate 2006
url https://eprints.soton.ac.uk/41362/
https://eprints.soton.ac.uk/41362/1/Nedelec_2006_PhD.pdf
long_lat ENVELOPE(-51.431,-51.431,-53.581,-53.581)
geographic North Scotia Ridge
Southern Ocean
geographic_facet North Scotia Ridge
Southern Ocean
genre Northeast Atlantic
Southern Ocean
genre_facet Northeast Atlantic
Southern Ocean
op_relation https://eprints.soton.ac.uk/41362/1/Nedelec_2006_PhD.pdf
Nedelec, F. (2006) Implementation of a method to determine sub-nanomolar concentrations of iron in seawater and its application to the study of marine iron biogeochemistry at the ocean-shelf interface. University of Southampton, Faculty of Engineering Science and Mathematics, School of Ocean and Earth Science, Doctoral Thesis, 155pp.
_version_ 1772817960348418048