Reconstructing ocean pH with boron isotopes in foraminifera

In order to better understand the effect of CO2 on the Earth system in the future, geologists may look to CO2-induced environmental change in Earth's past. Here we describe how CO2 can be reconstructed using the boron isotopic composition (?11B) of marine calcium carbonate. We review the chemic...

Full description

Bibliographic Details
Published in:Annual Review of Earth and Planetary Sciences
Main Authors: Foster, Gavin L., Rae, James W.B.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:https://eprints.soton.ac.uk/399717/
Description
Summary:In order to better understand the effect of CO2 on the Earth system in the future, geologists may look to CO2-induced environmental change in Earth's past. Here we describe how CO2 can be reconstructed using the boron isotopic composition (?11B) of marine calcium carbonate. We review the chemical principles that underlie the proxy, summarize the available calibration data, and detail how boron isotopes can be used to estimate ocean pH and ultimately atmospheric CO2 in the past. ?11B in a variety of marine carbonates shows a coherent relationship with seawater pH, in broad agreement with simple models for this proxy. Offsets between measured and predicted ?11B may in part be explained by physiological influences, though the exact mechanisms of boron incorporation into carbonate remain unknown. Despite these uncertainties, we demonstrate that ?11B may provide crucial constraints on past ocean acidification and atmospheric CO2.