Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry
Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17?Ma using ?18O in conjunction with Mg/Ca records...
Published in: | Paleoceanography |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2015
|
Subjects: | |
Online Access: | https://eprints.soton.ac.uk/388271/ https://eprints.soton.ac.uk/388271/1/palo20266.pdf |
id |
ftsouthampton:oai:eprints.soton.ac.uk:388271 |
---|---|
record_format |
openpolar |
spelling |
ftsouthampton:oai:eprints.soton.ac.uk:388271 2024-02-11T09:58:09+01:00 Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry Lear, Caroline H. Coxall, Helen K. Foster, Gavin L. Lunt, Daniel J. Mawbey, Elaine M. Rosenthal, Yair Sosdian, Sindia M. Thomas, Ellen Wilson, Paul A. 2015-11 text https://eprints.soton.ac.uk/388271/ https://eprints.soton.ac.uk/388271/1/palo20266.pdf en English eng https://eprints.soton.ac.uk/388271/1/palo20266.pdf Lear, Caroline H., Coxall, Helen K., Foster, Gavin L., Lunt, Daniel J., Mawbey, Elaine M., Rosenthal, Yair, Sosdian, Sindia M., Thomas, Ellen and Wilson, Paul A. (2015) Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography, 30 (11), 1437-1454. (doi:10.1002/2015PA002833 <http://dx.doi.org/10.1002/2015PA002833>). cc_by_4 Article PeerReviewed 2015 ftsouthampton https://doi.org/10.1002/2015PA002833 2024-01-25T23:18:59Z Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17?Ma using ?18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500?m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca?=?0.66?±?0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca?=?(1.21?±?0.04?+?0.12?±?0.004 × BWT (bottom water temperature)) × (Mg/Casw?0.003±0.02) (stated errors are 2?s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to ?18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14?Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet. Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Weddell Sea University of Southampton: e-Prints Soton Antarctic The Antarctic Weddell Sea Pacific Weddell Paleoceanography 30 11 1437 1454 |
institution |
Open Polar |
collection |
University of Southampton: e-Prints Soton |
op_collection_id |
ftsouthampton |
language |
English |
description |
Antarctic continental-scale glaciation is generally assumed to have initiated at the Eocene-Oligocene Transition, yet its subsequent evolution is poorly constrained. We reconstruct changes in bottom water temperature and global ice volume from 0 to 17?Ma using ?18O in conjunction with Mg/Ca records of the infaunal benthic foraminifer, O. umbonatus from Ocean Drilling Program (ODP) Site 806 (equatorial Pacific; ~2500?m). Considering uncertainties in core top calibrations and sensitivity to seawater Mg/Ca (Mg/Ca)sw, we produce a range of Mg/Ca-temperature-Mg/Casw calibrations. Our favored exponential temperature calibration is Mg/Ca?=?0.66?±?0.08 × Mg/Casw0.27±0.06 × e(0.114±0.02 × BWT) and our favored linear temperature calibration is Mg/Ca?=?(1.21?±?0.04?+?0.12?±?0.004 × BWT (bottom water temperature)) × (Mg/Casw?0.003±0.02) (stated errors are 2?s.e.). The equations are obtained by comparing O. umbonatus Mg/Ca for a Paleocene-Eocene section from Ocean Drilling Program (ODP) Site 690 (Weddell Sea) to ?18O temperatures, calculated assuming ice-free conditions during this peak warmth period of the Cenozoic. This procedure suggests negligible effect of Mg/Casw on the Mg distribution coefficient (DMg). Application of the new equations to the Site 806 record leads to the suggestion that global ice volume was greater than today after the Middle Miocene Climate Transition (~14?Ma). ODP Site 806 bottom waters cooled and freshened as the Pacific zonal sea surface temperature gradient increased, and climate cooled through the Pliocene, prior to the Plio-Pleistocene glaciation of the Northern Hemisphere. The records indicate a decoupling of deep water temperatures and global ice volume, demonstrating the importance of thresholds in the evolution of the Antarctic ice sheet. |
format |
Article in Journal/Newspaper |
author |
Lear, Caroline H. Coxall, Helen K. Foster, Gavin L. Lunt, Daniel J. Mawbey, Elaine M. Rosenthal, Yair Sosdian, Sindia M. Thomas, Ellen Wilson, Paul A. |
spellingShingle |
Lear, Caroline H. Coxall, Helen K. Foster, Gavin L. Lunt, Daniel J. Mawbey, Elaine M. Rosenthal, Yair Sosdian, Sindia M. Thomas, Ellen Wilson, Paul A. Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
author_facet |
Lear, Caroline H. Coxall, Helen K. Foster, Gavin L. Lunt, Daniel J. Mawbey, Elaine M. Rosenthal, Yair Sosdian, Sindia M. Thomas, Ellen Wilson, Paul A. |
author_sort |
Lear, Caroline H. |
title |
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
title_short |
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
title_full |
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
title_fullStr |
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
title_full_unstemmed |
Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry |
title_sort |
neogene ice volume and ocean temperatures: insights from infaunal foraminiferal mg/ca paleothermometry |
publishDate |
2015 |
url |
https://eprints.soton.ac.uk/388271/ https://eprints.soton.ac.uk/388271/1/palo20266.pdf |
geographic |
Antarctic The Antarctic Weddell Sea Pacific Weddell |
geographic_facet |
Antarctic The Antarctic Weddell Sea Pacific Weddell |
genre |
Antarc* Antarctic Ice Sheet Weddell Sea |
genre_facet |
Antarc* Antarctic Ice Sheet Weddell Sea |
op_relation |
https://eprints.soton.ac.uk/388271/1/palo20266.pdf Lear, Caroline H., Coxall, Helen K., Foster, Gavin L., Lunt, Daniel J., Mawbey, Elaine M., Rosenthal, Yair, Sosdian, Sindia M., Thomas, Ellen and Wilson, Paul A. (2015) Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography, 30 (11), 1437-1454. (doi:10.1002/2015PA002833 <http://dx.doi.org/10.1002/2015PA002833>). |
op_rights |
cc_by_4 |
op_doi |
https://doi.org/10.1002/2015PA002833 |
container_title |
Paleoceanography |
container_volume |
30 |
container_issue |
11 |
container_start_page |
1437 |
op_container_end_page |
1454 |
_version_ |
1790593738275291136 |