Biogeochemistry of hydrothermal systems in the Scotia Sea

Submarine hot springs play an important role in global heat transfer; element cycling; economic ore deposition; and as an energy source for chemosynthetic ecosystems. Almost four decades of deep-sea exploration have revealed hydrothermal venting to be a ubiquitous phenomenon across the global ocean...

Full description

Bibliographic Details
Main Author: Cole, Catherine
Format: Thesis
Language:English
Published: 2013
Subjects:
Online Access:https://eprints.soton.ac.uk/363754/
https://eprints.soton.ac.uk/363754/1/C.Cole_PhD%2520Thesis_Dec2013.pdf
id ftsouthampton:oai:eprints.soton.ac.uk:363754
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:363754 2023-07-30T03:57:56+02:00 Biogeochemistry of hydrothermal systems in the Scotia Sea Cole, Catherine 2013-10 text https://eprints.soton.ac.uk/363754/ https://eprints.soton.ac.uk/363754/1/C.Cole_PhD%2520Thesis_Dec2013.pdf en English eng https://eprints.soton.ac.uk/363754/1/C.Cole_PhD%2520Thesis_Dec2013.pdf Cole, Catherine (2013) Biogeochemistry of hydrothermal systems in the Scotia Sea. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 188pp. Thesis NonPeerReviewed 2013 ftsouthampton 2023-07-09T21:52:27Z Submarine hot springs play an important role in global heat transfer; element cycling; economic ore deposition; and as an energy source for chemosynthetic ecosystems. Almost four decades of deep-sea exploration have revealed hydrothermal venting to be a ubiquitous phenomenon across the global ocean floor, yet these systems have only recently been discovered in Antarctica. Between 1998 and 2012, high-temperature vents were detected and sampled along the East Scotia Ridge (ESR) and within the Kemp Caldera, which forms part of the South Sandwich island arc, during four research cruises to the Scotia Sea. These vent sites are the first discovered south of the polar front, and they have a distinct faunal assemblage that has characterised them as a new biogeographic province. In this thesis, I investigate the controls on hydrothermal fluid chemistry at the ESR and the Kemp Caldera, using the rare earth elements (REEs) as geochemical tracers. I demonstrate that REE distributions in hydrothermal fluids and associated sulphate deposits are variably influenced by reaction with the host rock; temperature and phase separation; fluid composition and magmatic gas injection; and anhydrite precipitation/dissolution. Secondly, I assess tissue bioaccumulation of metals in Kiwa tyleri sp. nov., the dominant macrofaunal species at the ESR vent sites, in response to their environmental exposure. Significant variation in metal burden between tissues reflects both abiotic and biotic controls on metal uptake, including external concentration; trophic position; ecological niche and behavioural traits; in addition to cellular mechanisms of regulation. Finally, I investigate proteomic pathways of metal regulation in the shallow water mussel, Mytilus edulis, and the vent-living mussel, Bathymodiolus sp. I show that both species have strong defence mechanisms against metal toxicity and oxidative stress, which may be important for successful colonisation of hydrothermal systems. This work highlights the diversity in chemical compositions of ... Thesis Antarc* Antarctica Scotia Sea University of Southampton: e-Prints Soton East Scotia Ridge ENVELOPE(-29.250,-29.250,-57.917,-57.917) Scotia Sea
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language English
description Submarine hot springs play an important role in global heat transfer; element cycling; economic ore deposition; and as an energy source for chemosynthetic ecosystems. Almost four decades of deep-sea exploration have revealed hydrothermal venting to be a ubiquitous phenomenon across the global ocean floor, yet these systems have only recently been discovered in Antarctica. Between 1998 and 2012, high-temperature vents were detected and sampled along the East Scotia Ridge (ESR) and within the Kemp Caldera, which forms part of the South Sandwich island arc, during four research cruises to the Scotia Sea. These vent sites are the first discovered south of the polar front, and they have a distinct faunal assemblage that has characterised them as a new biogeographic province. In this thesis, I investigate the controls on hydrothermal fluid chemistry at the ESR and the Kemp Caldera, using the rare earth elements (REEs) as geochemical tracers. I demonstrate that REE distributions in hydrothermal fluids and associated sulphate deposits are variably influenced by reaction with the host rock; temperature and phase separation; fluid composition and magmatic gas injection; and anhydrite precipitation/dissolution. Secondly, I assess tissue bioaccumulation of metals in Kiwa tyleri sp. nov., the dominant macrofaunal species at the ESR vent sites, in response to their environmental exposure. Significant variation in metal burden between tissues reflects both abiotic and biotic controls on metal uptake, including external concentration; trophic position; ecological niche and behavioural traits; in addition to cellular mechanisms of regulation. Finally, I investigate proteomic pathways of metal regulation in the shallow water mussel, Mytilus edulis, and the vent-living mussel, Bathymodiolus sp. I show that both species have strong defence mechanisms against metal toxicity and oxidative stress, which may be important for successful colonisation of hydrothermal systems. This work highlights the diversity in chemical compositions of ...
format Thesis
author Cole, Catherine
spellingShingle Cole, Catherine
Biogeochemistry of hydrothermal systems in the Scotia Sea
author_facet Cole, Catherine
author_sort Cole, Catherine
title Biogeochemistry of hydrothermal systems in the Scotia Sea
title_short Biogeochemistry of hydrothermal systems in the Scotia Sea
title_full Biogeochemistry of hydrothermal systems in the Scotia Sea
title_fullStr Biogeochemistry of hydrothermal systems in the Scotia Sea
title_full_unstemmed Biogeochemistry of hydrothermal systems in the Scotia Sea
title_sort biogeochemistry of hydrothermal systems in the scotia sea
publishDate 2013
url https://eprints.soton.ac.uk/363754/
https://eprints.soton.ac.uk/363754/1/C.Cole_PhD%2520Thesis_Dec2013.pdf
long_lat ENVELOPE(-29.250,-29.250,-57.917,-57.917)
geographic East Scotia Ridge
Scotia Sea
geographic_facet East Scotia Ridge
Scotia Sea
genre Antarc*
Antarctica
Scotia Sea
genre_facet Antarc*
Antarctica
Scotia Sea
op_relation https://eprints.soton.ac.uk/363754/1/C.Cole_PhD%2520Thesis_Dec2013.pdf
Cole, Catherine (2013) Biogeochemistry of hydrothermal systems in the Scotia Sea. University of Southampton, Ocean and Earth Science, Doctoral Thesis, 188pp.
_version_ 1772820328560459776