A synthesis of marine sediment core d13C data over the last 150 000 years

The isotopic composition of carbon, d13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of d13C measurements taken from foraminifera in marine sediment cores over the last 150,000 years is prese...

Full description

Bibliographic Details
Main Authors: Oliver, K.I.C., Hoogakker, B.A.A., Crowhurst, S., Henderson, G.M., Rickaby, R.E.M., Edwards, N.R., Elderfield, H.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2009
Subjects:
Online Access:https://eprints.soton.ac.uk/164615/
id ftsouthampton:oai:eprints.soton.ac.uk:164615
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:164615 2023-07-30T04:05:38+02:00 A synthesis of marine sediment core d13C data over the last 150 000 years Oliver, K.I.C. Hoogakker, B.A.A. Crowhurst, S. Henderson, G.M. Rickaby, R.E.M. Edwards, N.R. Elderfield, H. 2009 https://eprints.soton.ac.uk/164615/ unknown Oliver, K.I.C., Hoogakker, B.A.A., Crowhurst, S., Henderson, G.M., Rickaby, R.E.M., Edwards, N.R. and Elderfield, H. (2009) A synthesis of marine sediment core d13C data over the last 150 000 years. Climate of the Past, 5, 2497-2554. (doi:10.5194/cpd-5-2497-2009 <http://dx.doi.org/10.5194/cpd-5-2497-2009>). Article PeerReviewed 2009 ftsouthampton https://doi.org/10.5194/cpd-5-2497-2009 2023-07-09T21:18:31Z The isotopic composition of carbon, d13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of d13C measurements taken from foraminifera in marine sediment cores over the last 150,000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common 18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between d13C of calcite and of dissolved inorganic carbon (DIC) in seawater. This will assist comparison with 13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean d13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS) 1, 3, 5a, 5c and 5e, and low d13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical 13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale d13C during the last interglacial (MIS 5e) is not clearly distinguishable from the Holocene (MIS 1) or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2 concentration during these intervals. Similarly, MIS 6 is only distinguishable from ... Article in Journal/Newspaper North Atlantic University of Southampton: e-Prints Soton Pacific
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language unknown
description The isotopic composition of carbon, d13C, in seawater is used in reconstructions of ocean circulation, marine productivity, air-sea gas exchange, and biosphere carbon storage. Here, a synthesis of d13C measurements taken from foraminifera in marine sediment cores over the last 150,000 years is presented. The dataset comprises previously published and unpublished data from benthic and planktonic records throughout the global ocean. Data are placed on a common 18O age scale suitable for examining orbital timescale variability but not millennial events, which are removed by a 10 ka filter. Error estimates account for the resolution and scatter of the original data, and uncertainty in the relationship between d13C of calcite and of dissolved inorganic carbon (DIC) in seawater. This will assist comparison with 13C of DIC output from models, which can be further improved using model outputs such as temperature, DIC concentration, and alkalinity to improve estimates of fractionation during calcite formation. High global deep ocean d13C, indicating isotopically heavy carbon, is obtained during Marine Isotope Stages (MIS) 1, 3, 5a, 5c and 5e, and low d13C during MIS 2, 4 and 6, which are temperature minima, with larger amplitude variability in the Atlantic Ocean than the Pacific Ocean. This is likely to result from changes in biosphere carbon storage, modulated by changes in ocean circulation, productivity, and air-sea gas exchange. The North Atlantic vertical 13C gradient is greater during temperature minima than temperature maxima, attributed to changes in the spatial extent of Atlantic source waters. There are insufficient data from shallower than 2500 m to obtain a coherent pattern in other ocean basins. The data synthesis indicates that basin-scale d13C during the last interglacial (MIS 5e) is not clearly distinguishable from the Holocene (MIS 1) or from MIS 5a and 5c, despite significant differences in ice volume and atmospheric CO2 concentration during these intervals. Similarly, MIS 6 is only distinguishable from ...
format Article in Journal/Newspaper
author Oliver, K.I.C.
Hoogakker, B.A.A.
Crowhurst, S.
Henderson, G.M.
Rickaby, R.E.M.
Edwards, N.R.
Elderfield, H.
spellingShingle Oliver, K.I.C.
Hoogakker, B.A.A.
Crowhurst, S.
Henderson, G.M.
Rickaby, R.E.M.
Edwards, N.R.
Elderfield, H.
A synthesis of marine sediment core d13C data over the last 150 000 years
author_facet Oliver, K.I.C.
Hoogakker, B.A.A.
Crowhurst, S.
Henderson, G.M.
Rickaby, R.E.M.
Edwards, N.R.
Elderfield, H.
author_sort Oliver, K.I.C.
title A synthesis of marine sediment core d13C data over the last 150 000 years
title_short A synthesis of marine sediment core d13C data over the last 150 000 years
title_full A synthesis of marine sediment core d13C data over the last 150 000 years
title_fullStr A synthesis of marine sediment core d13C data over the last 150 000 years
title_full_unstemmed A synthesis of marine sediment core d13C data over the last 150 000 years
title_sort synthesis of marine sediment core d13c data over the last 150 000 years
publishDate 2009
url https://eprints.soton.ac.uk/164615/
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_relation Oliver, K.I.C., Hoogakker, B.A.A., Crowhurst, S., Henderson, G.M., Rickaby, R.E.M., Edwards, N.R. and Elderfield, H. (2009) A synthesis of marine sediment core d13C data over the last 150 000 years. Climate of the Past, 5, 2497-2554. (doi:10.5194/cpd-5-2497-2009 <http://dx.doi.org/10.5194/cpd-5-2497-2009>).
op_doi https://doi.org/10.5194/cpd-5-2497-2009
_version_ 1772817696299155456