Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter

Three methods of calculating the biovolume of particles from their shadows as recorded by and optical plankton counter (OPC), based on optical geometry, are presented. In the first method (Vsphere), particles are assumed to be opaque spheres. In the other two methods, particles are represented as op...

Full description

Bibliographic Details
Main Authors: Mustard, A.T., Anderson, T.R.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2005
Subjects:
Online Access:https://eprints.soton.ac.uk/15673/
http://aslo.org/lomethods/free/2005/0183.pdf
id ftsouthampton:oai:eprints.soton.ac.uk:15673
record_format openpolar
spelling ftsouthampton:oai:eprints.soton.ac.uk:15673 2024-06-09T07:45:13+00:00 Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter Mustard, A.T. Anderson, T.R. 2005 https://eprints.soton.ac.uk/15673/ http://aslo.org/lomethods/free/2005/0183.pdf unknown Mustard, A.T. and Anderson, T.R. (2005) Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter. Limnology and Oceanography: Methods, 3, 183-189. Article PeerReviewed 2005 ftsouthampton 2024-05-10T06:11:29Z Three methods of calculating the biovolume of particles from their shadows as recorded by and optical plankton counter (OPC), based on optical geometry, are presented. In the first method (Vsphere), particles are assumed to be opaque spheres. In the other two methods, particles are represented as opaque spheroids, oriented with their major axes either parallel to the flow thus presenting maximum shadow area (Vmax), or randomly orientated relative to the flow (Vran). The models were tested by comparing with net biovolume, measured from samples of a zooplankton assemblage dominated by Calanus finmarchicus collected during a cruise to the northeast Atlantic during 2001. The randomly orientated spheroidal model (Vran) provided the best fit with the net data: on average the ratio of OPC biovolume to net biovolume was 1.02, compared to ratios of 0.84 when calculating OPC biovolume as Vmax and 1.50 when calculating as Vsphere. The Vran and Vmax methods gave reasonable estimates of net biovolume from OPC measurements without recourse to the use of empirical tuning parameters that are otherwise required. This success was enhanced by the fact that the community chosen for validation purposes was dominated by a single species, C. finmarchicus, which could be approximated by spheroids of known dimension. The calibration methods are less likely to be effective when applied to zooplankton communities incorporating a diverse range of organisms. Article in Journal/Newspaper Calanus finmarchicus Northeast Atlantic University of Southampton: e-Prints Soton
institution Open Polar
collection University of Southampton: e-Prints Soton
op_collection_id ftsouthampton
language unknown
description Three methods of calculating the biovolume of particles from their shadows as recorded by and optical plankton counter (OPC), based on optical geometry, are presented. In the first method (Vsphere), particles are assumed to be opaque spheres. In the other two methods, particles are represented as opaque spheroids, oriented with their major axes either parallel to the flow thus presenting maximum shadow area (Vmax), or randomly orientated relative to the flow (Vran). The models were tested by comparing with net biovolume, measured from samples of a zooplankton assemblage dominated by Calanus finmarchicus collected during a cruise to the northeast Atlantic during 2001. The randomly orientated spheroidal model (Vran) provided the best fit with the net data: on average the ratio of OPC biovolume to net biovolume was 1.02, compared to ratios of 0.84 when calculating OPC biovolume as Vmax and 1.50 when calculating as Vsphere. The Vran and Vmax methods gave reasonable estimates of net biovolume from OPC measurements without recourse to the use of empirical tuning parameters that are otherwise required. This success was enhanced by the fact that the community chosen for validation purposes was dominated by a single species, C. finmarchicus, which could be approximated by spheroids of known dimension. The calibration methods are less likely to be effective when applied to zooplankton communities incorporating a diverse range of organisms.
format Article in Journal/Newspaper
author Mustard, A.T.
Anderson, T.R.
spellingShingle Mustard, A.T.
Anderson, T.R.
Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
author_facet Mustard, A.T.
Anderson, T.R.
author_sort Mustard, A.T.
title Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
title_short Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
title_full Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
title_fullStr Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
title_full_unstemmed Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
title_sort use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter
publishDate 2005
url https://eprints.soton.ac.uk/15673/
http://aslo.org/lomethods/free/2005/0183.pdf
genre Calanus finmarchicus
Northeast Atlantic
genre_facet Calanus finmarchicus
Northeast Atlantic
op_relation Mustard, A.T. and Anderson, T.R. (2005) Use of spherical and spheroidal models to calculate zooplankton biovolume from particle equivalent spherical diameter as measured by an optical plankton counter. Limnology and Oceanography: Methods, 3, 183-189.
_version_ 1801374271222579200