id ftsorbonneuniv:oai:HAL:tel-04166816v1
record_format openpolar
spelling ftsorbonneuniv:oai:HAL:tel-04166816v1 2024-09-15T18:24:29+00:00 Deep learning based physical-statistics modeling of ocean dynamics Modélisation physico-statistique de la dynamique des océans basée sur l'apprentissage profond Déchelle-Marquet, Marie Institut des Systèmes Intelligents et de Robotique (ISIR) Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Sorbonne Université Patrick Gallinari Marina Lévy 2023-05-10 https://theses.hal.science/tel-04166816 https://theses.hal.science/tel-04166816/document https://theses.hal.science/tel-04166816/file/DECHELLE_MARQUET_Marie_these_2023.pdf en eng HAL CCSD NNT: 2023SORUS170 tel-04166816 https://theses.hal.science/tel-04166816 https://theses.hal.science/tel-04166816/document https://theses.hal.science/tel-04166816/file/DECHELLE_MARQUET_Marie_these_2023.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-04166816 Machine Learning [cs.LG]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS170⟩ Neural networks Physics-guided Hybrid modeling Apprentissage profond Réseaux de neurones Modélisation physique Modèles hybrides Données océanographiques Données réelles [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/doctoralThesis Theses 2023 ftsorbonneuniv 2024-07-25T23:47:41Z The modeling of dynamical phenomena in geophysics and climate is based on a deep understanding of the underlying physics, described in the form of PDEs, and on their resolution by numerical models. The ever-increasing number of observations of physical systems, the recent rise of deep learning and the huge computational power required by numerical solvers, which hinders the resolution of existing models, suggest that the future of physical models could be data-driven. But for this prognosis to come true, deep learning must tackle several challenges, such as the interpretability and physical consistency of deep models, still largely under-addressed by the deep learning community.In this thesis, we address both challenges: we study the prediction of sea surface temperature (SST) using hybrid models combining a data-driven and a physical model. Ensuring the physical plausibility of hybrid models necessitates well-posing their learning: otherwise, the high versatility of neural networks may lead the data-driven part to bypass the physical part.Our study is divided into two parts: a theoretical study on hybrid models, and a practical confrontation of our model on simulations of real data. First, we propose a new generic well- posed learning framework based on the optimization of an upper-bound of a prediction error. Second, we study real-like ocean observations of SST and velocity fields from the Gulf Stream current in the North Atlantic (from the NATL60 model). This application highlights the challenges raised by confronting physics aware learning to the complexity of real-world physics. It also raises issues such as model generalization, which we discuss as a possible perspective. La modélisation des phénomènes dynamiques en géophysique repose sur une compréhension de la physique sous-jacente, décrite sous la forme d'EDP, et sur leur résolution par des modèles numériques. Le nombre croissant d'observations de systèmes physiques, l'essor récent de l'apprentissage profond et l'énorme puissance de calcul requise par ... Doctoral or Postdoctoral Thesis North Atlantic HAL Sorbonne Université
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic Neural networks
Physics-guided
Hybrid modeling
Apprentissage profond
Réseaux de neurones
Modélisation physique
Modèles hybrides
Données océanographiques
Données réelles
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
spellingShingle Neural networks
Physics-guided
Hybrid modeling
Apprentissage profond
Réseaux de neurones
Modélisation physique
Modèles hybrides
Données océanographiques
Données réelles
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Déchelle-Marquet, Marie
Deep learning based physical-statistics modeling of ocean dynamics
topic_facet Neural networks
Physics-guided
Hybrid modeling
Apprentissage profond
Réseaux de neurones
Modélisation physique
Modèles hybrides
Données océanographiques
Données réelles
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
description The modeling of dynamical phenomena in geophysics and climate is based on a deep understanding of the underlying physics, described in the form of PDEs, and on their resolution by numerical models. The ever-increasing number of observations of physical systems, the recent rise of deep learning and the huge computational power required by numerical solvers, which hinders the resolution of existing models, suggest that the future of physical models could be data-driven. But for this prognosis to come true, deep learning must tackle several challenges, such as the interpretability and physical consistency of deep models, still largely under-addressed by the deep learning community.In this thesis, we address both challenges: we study the prediction of sea surface temperature (SST) using hybrid models combining a data-driven and a physical model. Ensuring the physical plausibility of hybrid models necessitates well-posing their learning: otherwise, the high versatility of neural networks may lead the data-driven part to bypass the physical part.Our study is divided into two parts: a theoretical study on hybrid models, and a practical confrontation of our model on simulations of real data. First, we propose a new generic well- posed learning framework based on the optimization of an upper-bound of a prediction error. Second, we study real-like ocean observations of SST and velocity fields from the Gulf Stream current in the North Atlantic (from the NATL60 model). This application highlights the challenges raised by confronting physics aware learning to the complexity of real-world physics. It also raises issues such as model generalization, which we discuss as a possible perspective. La modélisation des phénomènes dynamiques en géophysique repose sur une compréhension de la physique sous-jacente, décrite sous la forme d'EDP, et sur leur résolution par des modèles numériques. Le nombre croissant d'observations de systèmes physiques, l'essor récent de l'apprentissage profond et l'énorme puissance de calcul requise par ...
author2 Institut des Systèmes Intelligents et de Robotique (ISIR)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Sorbonne Université
Patrick Gallinari
Marina Lévy
format Doctoral or Postdoctoral Thesis
author Déchelle-Marquet, Marie
author_facet Déchelle-Marquet, Marie
author_sort Déchelle-Marquet, Marie
title Deep learning based physical-statistics modeling of ocean dynamics
title_short Deep learning based physical-statistics modeling of ocean dynamics
title_full Deep learning based physical-statistics modeling of ocean dynamics
title_fullStr Deep learning based physical-statistics modeling of ocean dynamics
title_full_unstemmed Deep learning based physical-statistics modeling of ocean dynamics
title_sort deep learning based physical-statistics modeling of ocean dynamics
publisher HAL CCSD
publishDate 2023
url https://theses.hal.science/tel-04166816
https://theses.hal.science/tel-04166816/document
https://theses.hal.science/tel-04166816/file/DECHELLE_MARQUET_Marie_these_2023.pdf
genre North Atlantic
genre_facet North Atlantic
op_source https://theses.hal.science/tel-04166816
Machine Learning [cs.LG]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS170⟩
op_relation NNT: 2023SORUS170
tel-04166816
https://theses.hal.science/tel-04166816
https://theses.hal.science/tel-04166816/document
https://theses.hal.science/tel-04166816/file/DECHELLE_MARQUET_Marie_these_2023.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1810464844648808448