Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth

The development of passive optical networks and the increase of short-reach connections make an increasing need for efficient, energy-friendly and low-cost transmitters emitting at 1.3 µm.To this end, monolithic photonic integration, which aims to embed several optical functions into the same circui...

Full description

Bibliographic Details
Main Author: Binet, Guillaume
Other Authors: Institut Jean Le Rond d'Alembert (DALEMBERT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris VI, Sophie Bouchoule, Pierre-Yves Lagrée, Jean Decobert
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2016
Subjects:
DML
Online Access:https://theses.hal.science/tel-01534734
https://theses.hal.science/tel-01534734/document
https://theses.hal.science/tel-01534734/file/2016PA066524.pdf
id ftsorbonneuniv:oai:HAL:tel-01534734v1
record_format openpolar
spelling ftsorbonneuniv:oai:HAL:tel-01534734v1 2024-06-23T07:52:23+00:00 Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth Conception de transmetteurs 1,3 µm par épitaxie sélective en phase vapeur aux organo-métalliques Binet, Guillaume Institut Jean Le Rond d'Alembert (DALEMBERT) Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS) Université Pierre et Marie Curie - Paris VI Sophie Bouchoule Pierre-Yves Lagrée Jean Decobert 2016-12-13 https://theses.hal.science/tel-01534734 https://theses.hal.science/tel-01534734/document https://theses.hal.science/tel-01534734/file/2016PA066524.pdf fr fre HAL CCSD NNT: 2016PA066524 tel-01534734 https://theses.hal.science/tel-01534734 https://theses.hal.science/tel-01534734/document https://theses.hal.science/tel-01534734/file/2016PA066524.pdf info:eu-repo/semantics/OpenAccess https://theses.hal.science/tel-01534734 Optique / photonique. Université Pierre et Marie Curie - Paris VI, 2016. Français. ⟨NNT : 2016PA066524⟩ 1,3 micron Selective area growth Photonic integrated circuit Épitaxie sélective MOVPE Circuit intégré photonique ALGAINAS Modélisation de croissance d'interface [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic info:eu-repo/semantics/doctoralThesis Theses 2016 ftsorbonneuniv 2024-05-30T23:52:03Z The development of passive optical networks and the increase of short-reach connections make an increasing need for efficient, energy-friendly and low-cost transmitters emitting at 1.3 µm.To this end, monolithic photonic integration, which aims to embed several optical functions into the same circuit, is a solution. Selective area growth (SAG) by metal-organic vapor-phase-epitaxy (MOVPE) seems to be an attractive technique to achieve this integration. This approach allows defining, in a single epitaxial step, the structures of the different unitary photonic functions constituting the photonic integrated circuit. One issue of this technique is the growth modeling, necessary to predict the material distribution. Previously, the model was only taking into account vapor phase diffusion phenomena, neglecting surface phenomena. Consequently a more accurate approach was developed, based on interface relaxation.Simultaneously, we designed seven different active structures, all based on AlGaInAs multi-quantum wells, in order to optimize the DML and EML devices emitting at 1.3µm . We performed wide area laser and photocurrent absorption measurements to select the best trade-off design for devices fabrication.In order to perform accurate SAG of the selected structure, experimental study has been done to optimize the growth using transmission electronic microscopy and X-ray micro-diffraction. Devices have been processed and exhibit state of the art performances. A bandwidth of 12.5 GHz was demonstrated for a 250 µm long DML and 32 Gbit/s open eye diagram with a 10 dB dynamic extinction ratio has been shown, on a EML with a 100 µm long EAM. Le développement des réseaux optiques et l’augmentation des interconnexions à courtes distances, amènent un besoin croissant en transmetteurs émettant à 1,3 µm, performants, peu énergivores et fabriqués à bas coût.Ainsi, l’intégration photonique monolithique, qui vise à juxtaposer plusieurs fonctions optiques dans un même circuit, est une solution. L’épitaxie sélective en phase vapeur ... Doctoral or Postdoctoral Thesis DML HAL Sorbonne Université
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language French
topic 1,3 micron
Selective area growth
Photonic integrated circuit
Épitaxie sélective
MOVPE
Circuit intégré photonique
ALGAINAS
Modélisation de croissance d'interface
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
spellingShingle 1,3 micron
Selective area growth
Photonic integrated circuit
Épitaxie sélective
MOVPE
Circuit intégré photonique
ALGAINAS
Modélisation de croissance d'interface
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
Binet, Guillaume
Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
topic_facet 1,3 micron
Selective area growth
Photonic integrated circuit
Épitaxie sélective
MOVPE
Circuit intégré photonique
ALGAINAS
Modélisation de croissance d'interface
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
description The development of passive optical networks and the increase of short-reach connections make an increasing need for efficient, energy-friendly and low-cost transmitters emitting at 1.3 µm.To this end, monolithic photonic integration, which aims to embed several optical functions into the same circuit, is a solution. Selective area growth (SAG) by metal-organic vapor-phase-epitaxy (MOVPE) seems to be an attractive technique to achieve this integration. This approach allows defining, in a single epitaxial step, the structures of the different unitary photonic functions constituting the photonic integrated circuit. One issue of this technique is the growth modeling, necessary to predict the material distribution. Previously, the model was only taking into account vapor phase diffusion phenomena, neglecting surface phenomena. Consequently a more accurate approach was developed, based on interface relaxation.Simultaneously, we designed seven different active structures, all based on AlGaInAs multi-quantum wells, in order to optimize the DML and EML devices emitting at 1.3µm . We performed wide area laser and photocurrent absorption measurements to select the best trade-off design for devices fabrication.In order to perform accurate SAG of the selected structure, experimental study has been done to optimize the growth using transmission electronic microscopy and X-ray micro-diffraction. Devices have been processed and exhibit state of the art performances. A bandwidth of 12.5 GHz was demonstrated for a 250 µm long DML and 32 Gbit/s open eye diagram with a 10 dB dynamic extinction ratio has been shown, on a EML with a 100 µm long EAM. Le développement des réseaux optiques et l’augmentation des interconnexions à courtes distances, amènent un besoin croissant en transmetteurs émettant à 1,3 µm, performants, peu énergivores et fabriqués à bas coût.Ainsi, l’intégration photonique monolithique, qui vise à juxtaposer plusieurs fonctions optiques dans un même circuit, est une solution. L’épitaxie sélective en phase vapeur ...
author2 Institut Jean Le Rond d'Alembert (DALEMBERT)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris VI
Sophie Bouchoule
Pierre-Yves Lagrée
Jean Decobert
format Doctoral or Postdoctoral Thesis
author Binet, Guillaume
author_facet Binet, Guillaume
author_sort Binet, Guillaume
title Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
title_short Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
title_full Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
title_fullStr Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
title_full_unstemmed Design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
title_sort design of 1.3 µm transmitters by metalorganic vapor phase selective area growth
publisher HAL CCSD
publishDate 2016
url https://theses.hal.science/tel-01534734
https://theses.hal.science/tel-01534734/document
https://theses.hal.science/tel-01534734/file/2016PA066524.pdf
genre DML
genre_facet DML
op_source https://theses.hal.science/tel-01534734
Optique / photonique. Université Pierre et Marie Curie - Paris VI, 2016. Français. ⟨NNT : 2016PA066524⟩
op_relation NNT: 2016PA066524
tel-01534734
https://theses.hal.science/tel-01534734
https://theses.hal.science/tel-01534734/document
https://theses.hal.science/tel-01534734/file/2016PA066524.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1802643671036723200