Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation

International audience Atmospheric aerosol has substantial impacts on climate, air quality and biogeochemical cycles, and its concentrations are highly variable in space and time. A key variability to evaluate within models that simulate aerosol is the vertical distribution, which influences atmosph...

Full description

Bibliographic Details
Published in:Geoscientific Model Development
Main Authors: Bonazzola, Marine, Chepfer, Hélène, Ma, Po-Lun, Quaas, Johannes, Winker, David M., Feofilov, Artem, Schutgens, Nick
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://insu.hal.science/insu-04196540
https://insu.hal.science/insu-04196540/document
https://insu.hal.science/insu-04196540/file/gmd-16-1359-2023.pdf
https://doi.org/10.5194/gmd-16-1359-2023
id ftsorbonneuniv:oai:HAL:insu-04196540v1
record_format openpolar
spelling ftsorbonneuniv:oai:HAL:insu-04196540v1 2024-06-09T07:49:46+00:00 Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation Bonazzola, Marine Chepfer, Hélène Ma, Po-Lun Quaas, Johannes Winker, David M. Feofilov, Artem Schutgens, Nick Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) 2023 https://insu.hal.science/insu-04196540 https://insu.hal.science/insu-04196540/document https://insu.hal.science/insu-04196540/file/gmd-16-1359-2023.pdf https://doi.org/10.5194/gmd-16-1359-2023 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-16-1359-2023 insu-04196540 https://insu.hal.science/insu-04196540 https://insu.hal.science/insu-04196540/document https://insu.hal.science/insu-04196540/file/gmd-16-1359-2023.pdf BIBCODE: 2023GMD.16.1359B doi:10.5194/gmd-16-1359-2023 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1991-9603 EISSN: 1991-959X Geoscientific Model Development https://insu.hal.science/insu-04196540 Geoscientific Model Development, 2023, 16, pp.1359-1377. ⟨10.5194/gmd-16-1359-2023⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2023 ftsorbonneuniv https://doi.org/10.5194/gmd-16-1359-2023 2024-05-16T23:52:45Z International audience Atmospheric aerosol has substantial impacts on climate, air quality and biogeochemical cycles, and its concentrations are highly variable in space and time. A key variability to evaluate within models that simulate aerosol is the vertical distribution, which influences atmospheric heating profiles and aerosol-cloud interactions, to help constrain aerosol residence time and to better represent the magnitude of simulated impacts. To ensure a consistent comparison between modeled and observed vertical distribution of aerosol, we implemented an aerosol lidar simulator within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package version 2 (COSPv2). We assessed the attenuated total backscattered (ATB) signal and the backscatter ratios (SRs) at 532 nm in the U.S. Department of Energy's Energy Exascale Earth System Model version 1 (E3SMv1). The simulator performs the computations at the same vertical resolution as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), making use of aerosol optics from the E3SMv1 model as inputs and assuming that aerosol is uniformly distributed horizontally within each model grid box. The simulator applies a cloud masking and an aerosol detection threshold to obtain the ATB and SR profiles that would be observed above clouds by CALIOP with its aerosol detection capability. Our analysis shows that the aerosol distribution simulated at a seasonal timescale is generally in good agreement with observations. Over the Southern Ocean, however, the model does not produce the SR maximum as observed in the real world. Comparison between clear-sky and all-sky SRs shows little differences, indicating that the cloud screening by potentially incorrect model clouds does not affect the mean aerosol signal averaged over a season. This indicates that the differences between observed and simulated SR values are due not to sampling errors, but to deficiencies in the representation of aerosol in models. Finally, we highlight the need for ... Article in Journal/Newspaper Southern Ocean HAL Sorbonne Université Southern Ocean Geoscientific Model Development 16 4 1359 1377
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Bonazzola, Marine
Chepfer, Hélène
Ma, Po-Lun
Quaas, Johannes
Winker, David M.
Feofilov, Artem
Schutgens, Nick
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Atmospheric aerosol has substantial impacts on climate, air quality and biogeochemical cycles, and its concentrations are highly variable in space and time. A key variability to evaluate within models that simulate aerosol is the vertical distribution, which influences atmospheric heating profiles and aerosol-cloud interactions, to help constrain aerosol residence time and to better represent the magnitude of simulated impacts. To ensure a consistent comparison between modeled and observed vertical distribution of aerosol, we implemented an aerosol lidar simulator within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package version 2 (COSPv2). We assessed the attenuated total backscattered (ATB) signal and the backscatter ratios (SRs) at 532 nm in the U.S. Department of Energy's Energy Exascale Earth System Model version 1 (E3SMv1). The simulator performs the computations at the same vertical resolution as the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), making use of aerosol optics from the E3SMv1 model as inputs and assuming that aerosol is uniformly distributed horizontally within each model grid box. The simulator applies a cloud masking and an aerosol detection threshold to obtain the ATB and SR profiles that would be observed above clouds by CALIOP with its aerosol detection capability. Our analysis shows that the aerosol distribution simulated at a seasonal timescale is generally in good agreement with observations. Over the Southern Ocean, however, the model does not produce the SR maximum as observed in the real world. Comparison between clear-sky and all-sky SRs shows little differences, indicating that the cloud screening by potentially incorrect model clouds does not affect the mean aerosol signal averaged over a season. This indicates that the differences between observed and simulated SR values are due not to sampling errors, but to deficiencies in the representation of aerosol in models. Finally, we highlight the need for ...
author2 Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
format Article in Journal/Newspaper
author Bonazzola, Marine
Chepfer, Hélène
Ma, Po-Lun
Quaas, Johannes
Winker, David M.
Feofilov, Artem
Schutgens, Nick
author_facet Bonazzola, Marine
Chepfer, Hélène
Ma, Po-Lun
Quaas, Johannes
Winker, David M.
Feofilov, Artem
Schutgens, Nick
author_sort Bonazzola, Marine
title Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
title_short Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
title_full Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
title_fullStr Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
title_full_unstemmed Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
title_sort incorporation of aerosol into the cospv2 satellite lidar simulator for climate model evaluation
publisher HAL CCSD
publishDate 2023
url https://insu.hal.science/insu-04196540
https://insu.hal.science/insu-04196540/document
https://insu.hal.science/insu-04196540/file/gmd-16-1359-2023.pdf
https://doi.org/10.5194/gmd-16-1359-2023
geographic Southern Ocean
geographic_facet Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source ISSN: 1991-9603
EISSN: 1991-959X
Geoscientific Model Development
https://insu.hal.science/insu-04196540
Geoscientific Model Development, 2023, 16, pp.1359-1377. ⟨10.5194/gmd-16-1359-2023⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-16-1359-2023
insu-04196540
https://insu.hal.science/insu-04196540
https://insu.hal.science/insu-04196540/document
https://insu.hal.science/insu-04196540/file/gmd-16-1359-2023.pdf
BIBCODE: 2023GMD.16.1359B
doi:10.5194/gmd-16-1359-2023
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/gmd-16-1359-2023
container_title Geoscientific Model Development
container_volume 16
container_issue 4
container_start_page 1359
op_container_end_page 1377
_version_ 1801382560449691648