Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014
International audience The main drivers of the continental Northern Hemisphere snow cover are investigated in the 1979-2014 period. Four observational datasets are used as are two large multi-model ensembles of atmosphere-only simulations with prescribed sea surface temperature (SST) and sea ice con...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-04139554 https://insu.hal.science/insu-04139554/document https://insu.hal.science/insu-04139554/file/tc-17-2157-2023.pdf https://doi.org/10.5194/tc-17-2157-2023 |
id |
ftsorbonneuniv:oai:HAL:insu-04139554v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL Sorbonne Université |
op_collection_id |
ftsorbonneuniv |
language |
English |
topic |
[SDU]Sciences of the Universe [physics] |
spellingShingle |
[SDU]Sciences of the Universe [physics] Gastineau, Guillaume Frankignoul, Claude Gao, Yongqi Liang, Yu-Chiao Kwon, Young-Oh Cherchi, Annalisa Ghosh, Rohit Manzini, Elisa Matei, Daniela Mecking, Jennifer Suo, Lingling Tian, Tian Yang, Shuting Zhang, Ying Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
topic_facet |
[SDU]Sciences of the Universe [physics] |
description |
International audience The main drivers of the continental Northern Hemisphere snow cover are investigated in the 1979-2014 period. Four observational datasets are used as are two large multi-model ensembles of atmosphere-only simulations with prescribed sea surface temperature (SST) and sea ice concentration (SIC). A first ensemble uses observed interannually varying SST and SIC conditions for 1979-2014, while a second ensemble is identical except for SIC with a repeated climatological cycle used. SST and external forcing typically explain 10 % to 25 % of the snow cover variance in model simulations, with a dominant forcing from the tropical and North Pacific SST during this period. In terms of the climate influence of the snow cover anomalies, both observations and models show no robust links between the November and April snow cover variability and the atmospheric circulation 1 month later. On the other hand, the first mode of Eurasian snow cover variability in January, with more extended snow over western Eurasia, is found to precede an atmospheric circulation pattern by 1 month, similar to a negative Arctic oscillation (AO). A decomposition of the variability in the model simulations shows that this relationship is mainly due to internal climate variability. Detailed outputs from one of the models indicate that the western Eurasia snow cover anomalies are preceded by a negative AO phase accompanied by a Ural blocking pattern and a stratospheric polar vortex weakening. The link between the AO and the snow cover variability is strongly related to the concomitant role of the stratospheric polar vortex, with the Eurasian snow cover acting as a positive feedback for the AO variability in winter. No robust influence of the SIC variability is found, as the sea ice loss in these simulations only drives an insignificant fraction of the snow cover anomalies, with few agreements among models. |
author2 |
Océan et variabilité du climat (VARCLIM) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Nansen Environmental and Remote Sensing Center Bergen (NERSC) National Taïwan University (NTU) Woods Hole Oceanographic Institution (WHOI) Istituto Nazionale di Geofisica e Vulcanologia Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft National Oceanography Centre (NOC) Danish Meteorological Institute (DMI) Nansen-Zhu International Research Center (NZC) Institute of Atmospheric Physics Beijing (IAP) Chinese Academy of Sciences Beijing (CAS)-Chinese Academy of Sciences Beijing (CAS) ANR-19-JPOC-0003,ROADMAP,The Role of ocean dynamics and Ocean-Atmosphere interactions in Driving cliMAte variations and future Projections of impact-relevant extreme events(2019) European Project: 727852,Blue-Action(2016) |
format |
Article in Journal/Newspaper |
author |
Gastineau, Guillaume Frankignoul, Claude Gao, Yongqi Liang, Yu-Chiao Kwon, Young-Oh Cherchi, Annalisa Ghosh, Rohit Manzini, Elisa Matei, Daniela Mecking, Jennifer Suo, Lingling Tian, Tian Yang, Shuting Zhang, Ying |
author_facet |
Gastineau, Guillaume Frankignoul, Claude Gao, Yongqi Liang, Yu-Chiao Kwon, Young-Oh Cherchi, Annalisa Ghosh, Rohit Manzini, Elisa Matei, Daniela Mecking, Jennifer Suo, Lingling Tian, Tian Yang, Shuting Zhang, Ying |
author_sort |
Gastineau, Guillaume |
title |
Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
title_short |
Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
title_full |
Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
title_fullStr |
Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
title_full_unstemmed |
Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 |
title_sort |
forcing and impact of the northern hemisphere continental snow cover in 1979-2014 |
publisher |
HAL CCSD |
publishDate |
2023 |
url |
https://insu.hal.science/insu-04139554 https://insu.hal.science/insu-04139554/document https://insu.hal.science/insu-04139554/file/tc-17-2157-2023.pdf https://doi.org/10.5194/tc-17-2157-2023 |
genre |
Arctic Sea ice The Cryosphere |
genre_facet |
Arctic Sea ice The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-04139554 The Cryosphere, 2023, 17, pp.2157-2184. ⟨10.5194/tc-17-2157-2023⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-2157-2023 info:eu-repo/grantAgreement//727852/EU/Blue-Action: Arctic impact on weather and climat/Blue-Action insu-04139554 https://insu.hal.science/insu-04139554 https://insu.hal.science/insu-04139554/document https://insu.hal.science/insu-04139554/file/tc-17-2157-2023.pdf BIBCODE: 2023TCry.17.2157G doi:10.5194/tc-17-2157-2023 WOS: 000994443100001 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-17-2157-2023 |
container_title |
The Cryosphere |
container_volume |
17 |
container_issue |
5 |
container_start_page |
2157 |
op_container_end_page |
2184 |
_version_ |
1810293420209471488 |
spelling |
ftsorbonneuniv:oai:HAL:insu-04139554v1 2024-09-15T17:51:30+00:00 Forcing and impact of the Northern Hemisphere continental snow cover in 1979-2014 Gastineau, Guillaume Frankignoul, Claude Gao, Yongqi Liang, Yu-Chiao Kwon, Young-Oh Cherchi, Annalisa Ghosh, Rohit Manzini, Elisa Matei, Daniela Mecking, Jennifer Suo, Lingling Tian, Tian Yang, Shuting Zhang, Ying Océan et variabilité du climat (VARCLIM) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Nansen Environmental and Remote Sensing Center Bergen (NERSC) National Taïwan University (NTU) Woods Hole Oceanographic Institution (WHOI) Istituto Nazionale di Geofisica e Vulcanologia Max Planck Institute for Meteorology (MPI-M) Max-Planck-Gesellschaft National Oceanography Centre (NOC) Danish Meteorological Institute (DMI) Nansen-Zhu International Research Center (NZC) Institute of Atmospheric Physics Beijing (IAP) Chinese Academy of Sciences Beijing (CAS)-Chinese Academy of Sciences Beijing (CAS) ANR-19-JPOC-0003,ROADMAP,The Role of ocean dynamics and Ocean-Atmosphere interactions in Driving cliMAte variations and future Projections of impact-relevant extreme events(2019) European Project: 727852,Blue-Action(2016) 2023 https://insu.hal.science/insu-04139554 https://insu.hal.science/insu-04139554/document https://insu.hal.science/insu-04139554/file/tc-17-2157-2023.pdf https://doi.org/10.5194/tc-17-2157-2023 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-17-2157-2023 info:eu-repo/grantAgreement//727852/EU/Blue-Action: Arctic impact on weather and climat/Blue-Action insu-04139554 https://insu.hal.science/insu-04139554 https://insu.hal.science/insu-04139554/document https://insu.hal.science/insu-04139554/file/tc-17-2157-2023.pdf BIBCODE: 2023TCry.17.2157G doi:10.5194/tc-17-2157-2023 WOS: 000994443100001 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://insu.hal.science/insu-04139554 The Cryosphere, 2023, 17, pp.2157-2184. ⟨10.5194/tc-17-2157-2023⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2023 ftsorbonneuniv https://doi.org/10.5194/tc-17-2157-2023 2024-08-01T23:46:51Z International audience The main drivers of the continental Northern Hemisphere snow cover are investigated in the 1979-2014 period. Four observational datasets are used as are two large multi-model ensembles of atmosphere-only simulations with prescribed sea surface temperature (SST) and sea ice concentration (SIC). A first ensemble uses observed interannually varying SST and SIC conditions for 1979-2014, while a second ensemble is identical except for SIC with a repeated climatological cycle used. SST and external forcing typically explain 10 % to 25 % of the snow cover variance in model simulations, with a dominant forcing from the tropical and North Pacific SST during this period. In terms of the climate influence of the snow cover anomalies, both observations and models show no robust links between the November and April snow cover variability and the atmospheric circulation 1 month later. On the other hand, the first mode of Eurasian snow cover variability in January, with more extended snow over western Eurasia, is found to precede an atmospheric circulation pattern by 1 month, similar to a negative Arctic oscillation (AO). A decomposition of the variability in the model simulations shows that this relationship is mainly due to internal climate variability. Detailed outputs from one of the models indicate that the western Eurasia snow cover anomalies are preceded by a negative AO phase accompanied by a Ural blocking pattern and a stratospheric polar vortex weakening. The link between the AO and the snow cover variability is strongly related to the concomitant role of the stratospheric polar vortex, with the Eurasian snow cover acting as a positive feedback for the AO variability in winter. No robust influence of the SIC variability is found, as the sea ice loss in these simulations only drives an insignificant fraction of the snow cover anomalies, with few agreements among models. Article in Journal/Newspaper Arctic Sea ice The Cryosphere HAL Sorbonne Université The Cryosphere 17 5 2157 2184 |