Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column

International audience Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instru- ments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Pazmino, Andrea, Goutail, Florence, Godin-Beekmann, Sophie, Hauchecorne, Alain, Pommereau, Jean-Pierre, Chipperfield, Martyn, P, Feng, Wuhu, Lefèvre, Franck, Lecouffe, Audrey, van Roozendael, Michel, Jepsen, Nis, Hansen, Georg, Kivi, Rigel, Strong, Kimberly, Walker, Kaley, A
Other Authors: STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Environment Leeds (SEE), University of Leeds, NERC National Centre for Earth Observation (NCEO), Natural Environment Research Council (NERC), National Centre for Atmospheric Science Leeds (NCAS), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Danish Meteorological Institute (DMI), Norwegian Institute for Air Research (NILU), Faculty of Informatics and Mathematics (FMI), Fakultät für Informatik und Mathematik, Department of Physics Toronto, University of Toronto
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://insu.hal.science/insu-04096452
https://insu.hal.science/insu-04096452v2/document
https://insu.hal.science/insu-04096452v2/file/acp-23-15655-2023.pdf
https://doi.org/10.5194/acp-23-15655-2023
id ftsorbonneuniv:oai:HAL:insu-04096452v2
record_format openpolar
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Pazmino, Andrea
Goutail, Florence
Godin-Beekmann, Sophie
Hauchecorne, Alain
Pommereau, Jean-Pierre
Chipperfield, Martyn, P
Feng, Wuhu
Lefèvre, Franck
Lecouffe, Audrey
van Roozendael, Michel
Jepsen, Nis
Hansen, Georg
Kivi, Rigel
Strong, Kimberly
Walker, Kaley, A
Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instru- ments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observa- tions from Système d’Analyse par Observation Zénithale (SAOZ) ground-based instruments and Multi-Sensor Reanalysis (MSR2). The passive-tracer method allows us to determine the evolution of the daily rate of column ozone destruction and the magnitude of the cumulative column loss at the end of the winter. Three metrics are used in trend analyses that aim to assess the ozone recovery rate over both polar regions: (1) the maximum ozone loss at the end of the winter, (2) the onset day of ozone loss at a specific threshold, and (3) the ozone loss residuals computed from the differences between annual ozone loss and ozone loss values regressed with respect to sunlit volume of polar stratospheric clouds (VPSCs). This latter metric is based on linear and parabolic regressions for ozone loss in the Northern Hemisphere and Southern Hemisphere, respectively. In the Antarctic, metrics 1 and 3 yield trends of −2.3 % and −2.2 % per decade for the 2000–2021 period, significant at 1 and 2 standard deviations (σ ), respectively. For metric 2, various thresholds were considered at the total ozone loss values of 20%, 25%, 30%, 35%, and 40%, all of them showing a time delay as a function of year in terms of when the threshold is reached. The trends are significant at the 2σ level and vary from 3.5 to 4.2 d per decade between the various thresholds. In the Arctic, metric 1 exhibits large interannual variability, and no significant trend is detected; this result is highly influenced by the record ozone losses in 2011 and 2020. Metric 2 is not applied in the Northern Hemisphere due to the difficulty in finding a threshold value in enough of the winters. Metric 3 pro- vides a negative trend in ...
author2 STRATO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
School of Earth and Environment Leeds (SEE)
University of Leeds
NERC National Centre for Earth Observation (NCEO)
Natural Environment Research Council (NERC)
National Centre for Atmospheric Science Leeds (NCAS)
Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB)
Danish Meteorological Institute (DMI)
Norwegian Institute for Air Research (NILU)
Faculty of Informatics and Mathematics (FMI)
Fakultät für Informatik und Mathematik
Department of Physics Toronto
University of Toronto
format Article in Journal/Newspaper
author Pazmino, Andrea
Goutail, Florence
Godin-Beekmann, Sophie
Hauchecorne, Alain
Pommereau, Jean-Pierre
Chipperfield, Martyn, P
Feng, Wuhu
Lefèvre, Franck
Lecouffe, Audrey
van Roozendael, Michel
Jepsen, Nis
Hansen, Georg
Kivi, Rigel
Strong, Kimberly
Walker, Kaley, A
author_facet Pazmino, Andrea
Goutail, Florence
Godin-Beekmann, Sophie
Hauchecorne, Alain
Pommereau, Jean-Pierre
Chipperfield, Martyn, P
Feng, Wuhu
Lefèvre, Franck
Lecouffe, Audrey
van Roozendael, Michel
Jepsen, Nis
Hansen, Georg
Kivi, Rigel
Strong, Kimberly
Walker, Kaley, A
author_sort Pazmino, Andrea
title Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
title_short Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
title_full Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
title_fullStr Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
title_full_unstemmed Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
title_sort trends in polar ozone loss since 1989: potential sign of recovery in the arctic ozone column
publisher HAL CCSD
publishDate 2023
url https://insu.hal.science/insu-04096452
https://insu.hal.science/insu-04096452v2/document
https://insu.hal.science/insu-04096452v2/file/acp-23-15655-2023.pdf
https://doi.org/10.5194/acp-23-15655-2023
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 1680-7316
EISSN: 1680-7324
Atmospheric Chemistry and Physics
https://insu.hal.science/insu-04096452
Atmospheric Chemistry and Physics, 2023, 23 (24), pp.15655-15670. ⟨10.5194/acp-23-15655-2023⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-23-15655-2023
insu-04096452
https://insu.hal.science/insu-04096452
https://insu.hal.science/insu-04096452v2/document
https://insu.hal.science/insu-04096452v2/file/acp-23-15655-2023.pdf
doi:10.5194/acp-23-15655-2023
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/acp-23-15655-2023
container_title Atmospheric Chemistry and Physics
container_volume 23
container_issue 24
container_start_page 15655
op_container_end_page 15670
_version_ 1810491608681938944
spelling ftsorbonneuniv:oai:HAL:insu-04096452v2 2024-09-15T17:44:12+00:00 Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column Pazmino, Andrea Goutail, Florence Godin-Beekmann, Sophie Hauchecorne, Alain Pommereau, Jean-Pierre Chipperfield, Martyn, P Feng, Wuhu Lefèvre, Franck Lecouffe, Audrey van Roozendael, Michel Jepsen, Nis Hansen, Georg Kivi, Rigel Strong, Kimberly Walker, Kaley, A STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) School of Earth and Environment Leeds (SEE) University of Leeds NERC National Centre for Earth Observation (NCEO) Natural Environment Research Council (NERC) National Centre for Atmospheric Science Leeds (NCAS) Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB) Danish Meteorological Institute (DMI) Norwegian Institute for Air Research (NILU) Faculty of Informatics and Mathematics (FMI) Fakultät für Informatik und Mathematik Department of Physics Toronto University of Toronto 2023-05-12 https://insu.hal.science/insu-04096452 https://insu.hal.science/insu-04096452v2/document https://insu.hal.science/insu-04096452v2/file/acp-23-15655-2023.pdf https://doi.org/10.5194/acp-23-15655-2023 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-23-15655-2023 insu-04096452 https://insu.hal.science/insu-04096452 https://insu.hal.science/insu-04096452v2/document https://insu.hal.science/insu-04096452v2/file/acp-23-15655-2023.pdf doi:10.5194/acp-23-15655-2023 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1680-7316 EISSN: 1680-7324 Atmospheric Chemistry and Physics https://insu.hal.science/insu-04096452 Atmospheric Chemistry and Physics, 2023, 23 (24), pp.15655-15670. ⟨10.5194/acp-23-15655-2023⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2023 ftsorbonneuniv https://doi.org/10.5194/acp-23-15655-2023 2024-07-25T23:47:38Z International audience Ozone depletion over the polar regions is monitored each year by satellite- and ground-based instru- ments. In this study, the vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observa- tions from Système d’Analyse par Observation Zénithale (SAOZ) ground-based instruments and Multi-Sensor Reanalysis (MSR2). The passive-tracer method allows us to determine the evolution of the daily rate of column ozone destruction and the magnitude of the cumulative column loss at the end of the winter. Three metrics are used in trend analyses that aim to assess the ozone recovery rate over both polar regions: (1) the maximum ozone loss at the end of the winter, (2) the onset day of ozone loss at a specific threshold, and (3) the ozone loss residuals computed from the differences between annual ozone loss and ozone loss values regressed with respect to sunlit volume of polar stratospheric clouds (VPSCs). This latter metric is based on linear and parabolic regressions for ozone loss in the Northern Hemisphere and Southern Hemisphere, respectively. In the Antarctic, metrics 1 and 3 yield trends of −2.3 % and −2.2 % per decade for the 2000–2021 period, significant at 1 and 2 standard deviations (σ ), respectively. For metric 2, various thresholds were considered at the total ozone loss values of 20%, 25%, 30%, 35%, and 40%, all of them showing a time delay as a function of year in terms of when the threshold is reached. The trends are significant at the 2σ level and vary from 3.5 to 4.2 d per decade between the various thresholds. In the Arctic, metric 1 exhibits large interannual variability, and no significant trend is detected; this result is highly influenced by the record ozone losses in 2011 and 2020. Metric 2 is not applied in the Northern Hemisphere due to the difficulty in finding a threshold value in enough of the winters. Metric 3 pro- vides a negative trend in ... Article in Journal/Newspaper Antarc* Antarctic HAL Sorbonne Université Atmospheric Chemistry and Physics 23 24 15655 15670