Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters
International audience We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg 2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We iden...
Published in: | Monthly Notices of the Royal Astronomical Society |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2015
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-03644672 https://insu.hal.science/insu-03644672/document https://insu.hal.science/insu-03644672/file/stv2141.pdf https://doi.org/10.1093/mnras/stv2141 |
Summary: | International audience We cross-match galaxy cluster candidates selected via their Sunyaev-Zel'dovich effect (SZE) signatures in 129.1 deg 2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function <ln λ|M 500 > ∝ B λ ln M 500 + C λ ln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find B_λ = 1.14^{+0.21}_{-0.18} and C_λ =0.73^{+0.77}_{-0.75}. The associated scatter in mass at fixed richness is σ _{ln M|λ } = 0.18^{+0.08}_{-0.05} at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ∈ [4, 4.5]. |
---|