Total ozone loss during the 2021/22 Arctic winter and comparison to previous years

International audience The amplitude and rate of ozone depletion in the Arctic is monitored every year since 1994 by comparison between SAOZ UV-Vis ground-based network from NDACC and Multi-Sensor Reanalysis 2 (MSR-2) total ozone measurements over 8 stations in the Arctic and 3-D chemical transport...

Full description

Bibliographic Details
Main Authors: Pazmino, Andrea, Goutail, Florence, Pommereau, Jean-Pierre, Lefèvre, Franck, Godin-Beekmann, Sophie, Hauchecorne, Alain, Lecouffe, Audrey, Chipperfield, Martyn, Feng, Wuhu, van Roozendael, Michel, Jepsen, Nis, Hansen, Georg, Kivi, Rigel, Alwarda, Ramina, Strong, Kimberly, Walker, Kaley
Other Authors: STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Environment Leeds (SEE), University of Leeds, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Danish Meteorological Institute (DMI), Norwegian Institute for Air Research (NILU), Finnish Meteorological Institute (FMI), Department of Physics Toronto, University of Toronto
Format: Conference Object
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://insu.hal.science/insu-03640616
https://doi.org/10.5194/egusphere-egu22-7991
Description
Summary:International audience The amplitude and rate of ozone depletion in the Arctic is monitored every year since 1994 by comparison between SAOZ UV-Vis ground-based network from NDACC and Multi-Sensor Reanalysis 2 (MSR-2) total ozone measurements over 8 stations in the Arctic and 3-D chemical transport model simulations in which ozone is considered as a passive tracer. The passive ozone method allows determining the cumulative loss at the end of the winter. The amplitude of the destruction varies between 0-10% in relatively warm and short vortex duration years to 25-38% in colder and longer ones, which the record winters estimated in 2010/2011 and 2019/2020.In this study, the interannual variability of 10-days average rate of 2021/2022 winter will be analyzed and compared to previous years. In addition, SAOZ NO2 data will be used to evaluate re- noxification in the Arctic. The long-term ozone loss series estimated from measurements will be compared to REPROBUS and SLIMCAT CTM simulations. Relationship with illuminated Polar Stratospheric Clouds will be also presented.