Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment
International audience Spaceborne passive microwave sounders allow to detect convective storms thanks to their sensitivity to ice cloud particles. However, a worldwide assessment of the conditions under which these instruments can detect storms as well as a characterization of the microphysics of th...
Published in: | IEEE Geoscience and Remote Sensing Letters |
---|---|
Main Authors: | , , |
Other Authors: | , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://insu.hal.science/insu-01505756 https://doi.org/10.1109/LGRS.2016.2631725 |
id |
ftsorbonneuniv:oai:HAL:insu-01505756v1 |
---|---|
record_format |
openpolar |
spelling |
ftsorbonneuniv:oai:HAL:insu-01505756v1 2024-09-15T18:35:33+00:00 Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment Rysman, Jean-François Claud, Chantal Delanoë, Julien Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) SPACE - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) 2017 https://insu.hal.science/insu-01505756 https://doi.org/10.1109/LGRS.2016.2631725 en eng HAL CCSD IEEE - Institute of Electrical and Electronics Engineers info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2016.2631725 insu-01505756 https://insu.hal.science/insu-01505756 doi:10.1109/LGRS.2016.2631725 ISSN: 1545-598X EISSN: 1558-0571 IEEE Geoscience and Remote Sensing Letters https://insu.hal.science/insu-01505756 IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2), pp.159 - 163. ⟨10.1109/LGRS.2016.2631725⟩ [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology info:eu-repo/semantics/article Journal articles 2017 ftsorbonneuniv https://doi.org/10.1109/LGRS.2016.2631725 2024-08-01T23:46:53Z International audience Spaceborne passive microwave sounders allow to detect convective storms thanks to their sensitivity to ice cloud particles. However, a worldwide assessment of the conditions under which these instruments can detect storms as well as a characterization of the microphysics of the detected storms is still missing. In this letter, we used ten-year measurements from Cloudsat radar and CALIPSO lidar to assess and characterize two convection diagnostics, namely, deep convection (DC) and convective overshooting (COV), derived from microwave humidity sounder measurements. When snow and sea ice-covered regions, such as Siberia and elevated regions (>1800 m) are discarded, DC and COV are associated with convective clouds, as identified by Cloudsat, more than 90% of time. COV reaches the Tropopause in 51% of cases. Results also show that ice water content (IWC) profiles peak higher for COV (9 km) than DC (7 km), with a heavier average ice loading for DC (0.9 g/m 3 ) than for COV (0.8 g/m 3 ). Maximal altitude reached by ice clouds is higher in the tropics than in the midlatitudes (16.1 km against 12.7 km in average for COV events), while average IWC is slightly higher in the tropics (0.21 g/m 3 against 0.18 g/m 3 for DC events). This evaluation and characterization open the doors to the development of a unique 60° S/60° N, 1999-present database of DC and COV using spaceborne passive microwave sounders. Article in Journal/Newspaper Sea ice Siberia HAL Sorbonne Université IEEE Geoscience and Remote Sensing Letters 14 2 159 163 |
institution |
Open Polar |
collection |
HAL Sorbonne Université |
op_collection_id |
ftsorbonneuniv |
language |
English |
topic |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology |
spellingShingle |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology Rysman, Jean-François Claud, Chantal Delanoë, Julien Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
topic_facet |
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology |
description |
International audience Spaceborne passive microwave sounders allow to detect convective storms thanks to their sensitivity to ice cloud particles. However, a worldwide assessment of the conditions under which these instruments can detect storms as well as a characterization of the microphysics of the detected storms is still missing. In this letter, we used ten-year measurements from Cloudsat radar and CALIPSO lidar to assess and characterize two convection diagnostics, namely, deep convection (DC) and convective overshooting (COV), derived from microwave humidity sounder measurements. When snow and sea ice-covered regions, such as Siberia and elevated regions (>1800 m) are discarded, DC and COV are associated with convective clouds, as identified by Cloudsat, more than 90% of time. COV reaches the Tropopause in 51% of cases. Results also show that ice water content (IWC) profiles peak higher for COV (9 km) than DC (7 km), with a heavier average ice loading for DC (0.9 g/m 3 ) than for COV (0.8 g/m 3 ). Maximal altitude reached by ice clouds is higher in the tropics than in the midlatitudes (16.1 km against 12.7 km in average for COV events), while average IWC is slightly higher in the tropics (0.21 g/m 3 against 0.18 g/m 3 for DC events). This evaluation and characterization open the doors to the development of a unique 60° S/60° N, 1999-present database of DC and COV using spaceborne passive microwave sounders. |
author2 |
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) SPACE - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Rysman, Jean-François Claud, Chantal Delanoë, Julien |
author_facet |
Rysman, Jean-François Claud, Chantal Delanoë, Julien |
author_sort |
Rysman, Jean-François |
title |
Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
title_short |
Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
title_full |
Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
title_fullStr |
Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
title_full_unstemmed |
Monitoring Deep Convection and Convective Overshooting From 60° S to 60° N Using MHS: A Cloudsat/CALIPSO-Based Assessment |
title_sort |
monitoring deep convection and convective overshooting from 60° s to 60° n using mhs: a cloudsat/calipso-based assessment |
publisher |
HAL CCSD |
publishDate |
2017 |
url |
https://insu.hal.science/insu-01505756 https://doi.org/10.1109/LGRS.2016.2631725 |
genre |
Sea ice Siberia |
genre_facet |
Sea ice Siberia |
op_source |
ISSN: 1545-598X EISSN: 1558-0571 IEEE Geoscience and Remote Sensing Letters https://insu.hal.science/insu-01505756 IEEE Geoscience and Remote Sensing Letters, 2017, 14 (2), pp.159 - 163. ⟨10.1109/LGRS.2016.2631725⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1109/LGRS.2016.2631725 insu-01505756 https://insu.hal.science/insu-01505756 doi:10.1109/LGRS.2016.2631725 |
op_doi |
https://doi.org/10.1109/LGRS.2016.2631725 |
container_title |
IEEE Geoscience and Remote Sensing Letters |
container_volume |
14 |
container_issue |
2 |
container_start_page |
159 |
op_container_end_page |
163 |
_version_ |
1810478729134080000 |