The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation
International audience The observational uncertainty in sea ice concentration estimates from remotely sensed passive microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observa...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-04671841 https://hal.science/hal-04671841/document https://hal.science/hal-04671841/file/tc-14-2387-2020.pdf https://doi.org/10.5194/tc-14-2387-2020 |
id |
ftsorbonneuniv:oai:HAL:hal-04671841v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL Sorbonne Université |
op_collection_id |
ftsorbonneuniv |
language |
English |
topic |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
spellingShingle |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Burgard, Clara Notz, Dirk Pedersen, Leif, T Tonboe, Rasmus, T The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
topic_facet |
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
description |
International audience The observational uncertainty in sea ice concentration estimates from remotely sensed passive microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarization from standard output of an Earth System Model. To evaluate sources of uncertainties when applying ARC3O, we compare brightness temperatures simulated by applying ARC3O on three assimilation runs of the MPI Earth System Model (MPI-ESM), assimilated with three different sea ice concentration products, with brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that the simulated and observed brightness temperatures differ up to 10 K in the period between October and June, depending on the region and the assimilation run. We show that these discrepancies between simulated and observed brightness temperature can be attributed mainly to the underlying observational uncertainty in sea ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea ice concentration and the melt pond parametrization in MPI-ESM, which is not necessarily realistic. ARC3O is therefore capable of realistically translating the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialization. |
author2 |
Max-Planck-Institut für Meteorologie (MPI-M) Max-Planck-Gesellschaft Processus et interactions de fine échelle océanique (PROTEO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Max Planck Institute for Meteorology (MPI-M) Center for Earth System Research and Sustainability (CEN) Universität Hamburg (UHH) National Space Institute Lyngby (DTU Space) Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Danish Meteorological Institute (DMI) European Space Agency (Sea Ice Climate Change Initiative Phase 2) |
format |
Article in Journal/Newspaper |
author |
Burgard, Clara Notz, Dirk Pedersen, Leif, T Tonboe, Rasmus, T |
author_facet |
Burgard, Clara Notz, Dirk Pedersen, Leif, T Tonboe, Rasmus, T |
author_sort |
Burgard, Clara |
title |
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
title_short |
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
title_full |
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
title_fullStr |
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
title_full_unstemmed |
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation |
title_sort |
arctic ocean observation operator for 6.9 ghz (arc3o) – part 2: development and evaluation |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.science/hal-04671841 https://hal.science/hal-04671841/document https://hal.science/hal-04671841/file/tc-14-2387-2020.pdf https://doi.org/10.5194/tc-14-2387-2020 |
genre |
Arctic Ocean Sea ice The Cryosphere |
genre_facet |
Arctic Ocean Sea ice The Cryosphere |
op_source |
ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04671841 The Cryosphere, 2020, 14 (7), pp.2387-2407. ⟨10.5194/tc-14-2387-2020⟩ https://tc.copernicus.org/articles/14/2387/2020/ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-2387-2020 hal-04671841 https://hal.science/hal-04671841 https://hal.science/hal-04671841/document https://hal.science/hal-04671841/file/tc-14-2387-2020.pdf doi:10.5194/tc-14-2387-2020 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/tc-14-2387-2020 |
container_title |
The Cryosphere |
container_volume |
14 |
container_issue |
7 |
container_start_page |
2387 |
op_container_end_page |
2407 |
_version_ |
1810295407096365056 |
spelling |
ftsorbonneuniv:oai:HAL:hal-04671841v1 2024-09-15T17:53:21+00:00 The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation Burgard, Clara Notz, Dirk Pedersen, Leif, T Tonboe, Rasmus, T Max-Planck-Institut für Meteorologie (MPI-M) Max-Planck-Gesellschaft Processus et interactions de fine échelle océanique (PROTEO) Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN) Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Max Planck Institute for Meteorology (MPI-M) Center for Earth System Research and Sustainability (CEN) Universität Hamburg (UHH) National Space Institute Lyngby (DTU Space) Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Danish Meteorological Institute (DMI) European Space Agency (Sea Ice Climate Change Initiative Phase 2) 2020-07-23 https://hal.science/hal-04671841 https://hal.science/hal-04671841/document https://hal.science/hal-04671841/file/tc-14-2387-2020.pdf https://doi.org/10.5194/tc-14-2387-2020 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-14-2387-2020 hal-04671841 https://hal.science/hal-04671841 https://hal.science/hal-04671841/document https://hal.science/hal-04671841/file/tc-14-2387-2020.pdf doi:10.5194/tc-14-2387-2020 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-04671841 The Cryosphere, 2020, 14 (7), pp.2387-2407. ⟨10.5194/tc-14-2387-2020⟩ https://tc.copernicus.org/articles/14/2387/2020/ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2020 ftsorbonneuniv https://doi.org/10.5194/tc-14-2387-2020 2024-08-30T00:00:52Z International audience The observational uncertainty in sea ice concentration estimates from remotely sensed passive microwave brightness temperatures is a challenge for reliable climate model evaluation and initialization. To address this challenge, we introduce a new tool: the Arctic Ocean Observation Operator (ARC3O). ARC3O allows us to simulate brightness temperatures at 6.9 GHz at vertical polarization from standard output of an Earth System Model. To evaluate sources of uncertainties when applying ARC3O, we compare brightness temperatures simulated by applying ARC3O on three assimilation runs of the MPI Earth System Model (MPI-ESM), assimilated with three different sea ice concentration products, with brightness temperatures measured by the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) from space. We find that the simulated and observed brightness temperatures differ up to 10 K in the period between October and June, depending on the region and the assimilation run. We show that these discrepancies between simulated and observed brightness temperature can be attributed mainly to the underlying observational uncertainty in sea ice concentration and, to a lesser extent, to the data assimilation process, rather than to biases in ARC3O itself. In summer, the discrepancies between simulated and observed brightness temperatures are larger than in winter and locally reach up to 20 K. This is caused by the very large observational uncertainty in summer sea ice concentration and the melt pond parametrization in MPI-ESM, which is not necessarily realistic. ARC3O is therefore capable of realistically translating the simulated Arctic Ocean climate state into one observable quantity for a more comprehensive climate model evaluation and initialization. Article in Journal/Newspaper Arctic Ocean Sea ice The Cryosphere HAL Sorbonne Université The Cryosphere 14 7 2387 2407 |