Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway

International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The N...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Pillot, Q., Donnadieu, Y., Sarr, A.‐C., Ladant, J.‐B., Suchéras-Marx, B.
Other Authors: Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation du climat (CLIM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016), ANR-20-CE49-0002,MioCarb,La transition Mio-Pliocene : mise en place du cycle du carbone moderne(2020)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03763405
https://hal.science/hal-03763405/document
https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf
https://doi.org/10.1029/2022pa004415
id ftsorbonneuniv:oai:HAL:hal-03763405v1
record_format openpolar
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
Pillot, Q.
Donnadieu, Y.
Sarr, A.‐C.
Ladant, J.‐B.
Suchéras-Marx, B.
Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment
description International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The NADW forms mainly in the Norwegian Sea by winter open-ocean cooling of salt-rich water advected northward by the Gulf Stream. The cooling increases the density of surface waters, which results in vertical convection and the formation of deep water. The newly formed deep and dense waters flow southward to the Southern Ocean, where they are upwelled under the action of the Antarctic Circumpolar Current (ACC). They are then dragged either into the AABW overturning branch and redistributed in the Pacific and Indian basins via the ACC or into the formation area of the Antarctic Intermediate Water (AAIW), thereby flowing northward as (sub)surface currents and closing the AMOC cell (Talley, 2013). The structure of the modern AMOC results from the particular configuration of the Atlantic basin geometry with a closed Central American Seaway and an open Drake Passage (Ferreira et al., 2018). During Cenozoic times (66-0 Ma) and, in particular, the Miocene period (23-5 Ma), the physical structure of the AMOC was probably different compared to the present-day because the configuration of major gateways and submarine topographic barriers in the Atlantic and Pacific basins differ substantially (Hutchinson et al., 2019). From the early Miocene (∼23 Ma) to today, these changes include the deepening of the Greenland-Scotland Ridge (Stärz et al., 2017), the opening of Fram Strait (Ehlers & Jokat, 2013) and Bering Strait (Gladenkov & Gladenkov, 2004) in the northern high latitudes; the closure of Central American Seaway (Montes et al., 2015) and Eastern Tethys Seaway (ETS, Bialik et al., 2019) in the tropics; and the potential narrowing of Drake Passage (Lagabrielle et al., 2009) in the southern high latitudes. Apart from those ...
author2 Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Modélisation du climat (CLIM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016)
ANR-20-CE49-0002,MioCarb,La transition Mio-Pliocene : mise en place du cycle du carbone moderne(2020)
format Article in Journal/Newspaper
author Pillot, Q.
Donnadieu, Y.
Sarr, A.‐C.
Ladant, J.‐B.
Suchéras-Marx, B.
author_facet Pillot, Q.
Donnadieu, Y.
Sarr, A.‐C.
Ladant, J.‐B.
Suchéras-Marx, B.
author_sort Pillot, Q.
title Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
title_short Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
title_full Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
title_fullStr Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
title_full_unstemmed Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway
title_sort evolution of ocean circulation in the north atlantic ocean during the miocene: impact of the greenland ice sheet and the eastern tethys seaway
publisher HAL CCSD
publishDate 2022
url https://hal.science/hal-03763405
https://hal.science/hal-03763405/document
https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf
https://doi.org/10.1029/2022pa004415
long_lat ENVELOPE(-62.050,-62.050,-64.600,-64.600)
geographic Antarctic
Southern Ocean
The Antarctic
Norwegian Sea
Drake Passage
Bering Strait
Greenland
Pacific
Indian
Ferreira
geographic_facet Antarctic
Southern Ocean
The Antarctic
Norwegian Sea
Drake Passage
Bering Strait
Greenland
Pacific
Indian
Ferreira
genre Antarc*
Antarctic
Bering Strait
Drake Passage
Fram Strait
Greenland
Greenland-Scotland Ridge
Ice Sheet
NADW
North Atlantic Deep Water
North Atlantic
Norwegian Sea
Southern Ocean
genre_facet Antarc*
Antarctic
Bering Strait
Drake Passage
Fram Strait
Greenland
Greenland-Scotland Ridge
Ice Sheet
NADW
North Atlantic Deep Water
North Atlantic
Norwegian Sea
Southern Ocean
op_source ISSN: 2572-4525
EISSN: 1944-9186
Paleoceanography and Paleoclimatology
https://hal.science/hal-03763405
Paleoceanography and Paleoclimatology, 2022, 37 (8), pp.e2022PA004415. ⟨10.1029/2022pa004415⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2022pa004415
hal-03763405
https://hal.science/hal-03763405
https://hal.science/hal-03763405/document
https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf
doi:10.1029/2022pa004415
WOS: 000846753500001
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2022pa004415
container_title Paleoceanography and Paleoclimatology
container_volume 37
container_issue 8
_version_ 1802649613917749248
spelling ftsorbonneuniv:oai:HAL:hal-03763405v1 2024-06-23T07:46:57+00:00 Evolution of Ocean circulation in the North Atlantic Ocean during the Miocene: impact of the Greenland ice sheet and the Eastern Tethys Seaway Pillot, Q. Donnadieu, Y. Sarr, A.‐C. Ladant, J.‐B. Suchéras-Marx, B. Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Modélisation du climat (CLIM) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) ANR-16-CE31-0020,AMOR,Reconstruction modèle-données des climats du Cénozoique(2016) ANR-20-CE49-0002,MioCarb,La transition Mio-Pliocene : mise en place du cycle du carbone moderne(2020) 2022-08 https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf https://doi.org/10.1029/2022pa004415 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2022pa004415 hal-03763405 https://hal.science/hal-03763405 https://hal.science/hal-03763405/document https://hal.science/hal-03763405/file/Paleoceanog%20and%20Paleoclimatol%20-%202022%20-%20Pillot%20-%20Evolution%20of%20Ocean%20Circulation%20in%20the%20North%20Atlantic%20Ocean%20During%20the.pdf doi:10.1029/2022pa004415 WOS: 000846753500001 info:eu-repo/semantics/OpenAccess ISSN: 2572-4525 EISSN: 1944-9186 Paleoceanography and Paleoclimatology https://hal.science/hal-03763405 Paleoceanography and Paleoclimatology, 2022, 37 (8), pp.e2022PA004415. ⟨10.1029/2022pa004415⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment info:eu-repo/semantics/article Journal articles 2022 ftsorbonneuniv https://doi.org/10.1029/2022pa004415 2024-06-13T23:43:18Z International audience The Atlantic Meridional Overturning Circulation (AMOC) is today the central feature of the Global ocean circulation (Talley, 2013). It is dominated by two overturning cells usually referred to as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW). The NADW forms mainly in the Norwegian Sea by winter open-ocean cooling of salt-rich water advected northward by the Gulf Stream. The cooling increases the density of surface waters, which results in vertical convection and the formation of deep water. The newly formed deep and dense waters flow southward to the Southern Ocean, where they are upwelled under the action of the Antarctic Circumpolar Current (ACC). They are then dragged either into the AABW overturning branch and redistributed in the Pacific and Indian basins via the ACC or into the formation area of the Antarctic Intermediate Water (AAIW), thereby flowing northward as (sub)surface currents and closing the AMOC cell (Talley, 2013). The structure of the modern AMOC results from the particular configuration of the Atlantic basin geometry with a closed Central American Seaway and an open Drake Passage (Ferreira et al., 2018). During Cenozoic times (66-0 Ma) and, in particular, the Miocene period (23-5 Ma), the physical structure of the AMOC was probably different compared to the present-day because the configuration of major gateways and submarine topographic barriers in the Atlantic and Pacific basins differ substantially (Hutchinson et al., 2019). From the early Miocene (∼23 Ma) to today, these changes include the deepening of the Greenland-Scotland Ridge (Stärz et al., 2017), the opening of Fram Strait (Ehlers & Jokat, 2013) and Bering Strait (Gladenkov & Gladenkov, 2004) in the northern high latitudes; the closure of Central American Seaway (Montes et al., 2015) and Eastern Tethys Seaway (ETS, Bialik et al., 2019) in the tropics; and the potential narrowing of Drake Passage (Lagabrielle et al., 2009) in the southern high latitudes. Apart from those ... Article in Journal/Newspaper Antarc* Antarctic Bering Strait Drake Passage Fram Strait Greenland Greenland-Scotland Ridge Ice Sheet NADW North Atlantic Deep Water North Atlantic Norwegian Sea Southern Ocean HAL Sorbonne Université Antarctic Southern Ocean The Antarctic Norwegian Sea Drake Passage Bering Strait Greenland Pacific Indian Ferreira ENVELOPE(-62.050,-62.050,-64.600,-64.600) Paleoceanography and Paleoclimatology 37 8