Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables

International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric...

Full description

Bibliographic Details
Published in:Atmospheric Measurement Techniques
Main Authors: Planat, Noémie, Gehring, Josué, Vignon, Étienne, Berne, Alexis
Other Authors: Environmental Remote Sensing Laboratory Lausanne, Ecole Polytechnique Fédérale de Lausanne (EPFL), McGill University = Université McGill Montréal, Canada, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-03266763
https://hal.sorbonne-universite.fr/hal-03266763/document
https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf
https://doi.org/10.5194/amt-14-4543-2021
id ftsorbonneuniv:oai:HAL:hal-03266763v1
record_format openpolar
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Planat, Noémie
Gehring, Josué
Vignon, Étienne
Berne, Alexis
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
topic_facet [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential ...
author2 Environmental Remote Sensing Laboratory Lausanne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
McGill University = Université McGill Montréal, Canada
Laboratoire de Météorologie Dynamique (UMR 8539) (LMD)
Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)
Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Institut Pierre-Simon-Laplace (IPSL (FR_636))
Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)
Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
format Article in Journal/Newspaper
author Planat, Noémie
Gehring, Josué
Vignon, Étienne
Berne, Alexis
author_facet Planat, Noémie
Gehring, Josué
Vignon, Étienne
Berne, Alexis
author_sort Planat, Noémie
title Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
title_short Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
title_full Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
title_fullStr Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
title_full_unstemmed Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
title_sort identification of snowfall microphysical processes from eulerian vertical gradients of polarimetric radar variables
publisher HAL CCSD
publishDate 2021
url https://hal.sorbonne-universite.fr/hal-03266763
https://hal.sorbonne-universite.fr/hal-03266763/document
https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf
https://doi.org/10.5194/amt-14-4543-2021
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_source ISSN: 1867-1381
EISSN: 1867-8548
Atmospheric Measurement Techniques
https://hal.sorbonne-universite.fr/hal-03266763
Atmospheric Measurement Techniques, 2021, 14 (6), pp.4543 - 4564. ⟨10.5194/amt-14-4543-2021⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-14-4543-2021
hal-03266763
https://hal.sorbonne-universite.fr/hal-03266763
https://hal.sorbonne-universite.fr/hal-03266763/document
https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf
doi:10.5194/amt-14-4543-2021
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/amt-14-4543-2021
container_title Atmospheric Measurement Techniques
container_volume 14
container_issue 6
container_start_page 4543
op_container_end_page 4564
_version_ 1810494566169575424
spelling ftsorbonneuniv:oai:HAL:hal-03266763v1 2024-09-15T17:46:26+00:00 Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables Planat, Noémie Gehring, Josué Vignon, Étienne Berne, Alexis Environmental Remote Sensing Laboratory Lausanne Ecole Polytechnique Fédérale de Lausanne (EPFL) McGill University = Université McGill Montréal, Canada Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL) Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) 2021-06-18 https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf https://doi.org/10.5194/amt-14-4543-2021 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-14-4543-2021 hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf doi:10.5194/amt-14-4543-2021 info:eu-repo/semantics/OpenAccess ISSN: 1867-1381 EISSN: 1867-8548 Atmospheric Measurement Techniques https://hal.sorbonne-universite.fr/hal-03266763 Atmospheric Measurement Techniques, 2021, 14 (6), pp.4543 - 4564. ⟨10.5194/amt-14-4543-2021⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2021 ftsorbonneuniv https://doi.org/10.5194/amt-14-4543-2021 2024-08-01T23:46:52Z International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential ... Article in Journal/Newspaper Antarc* Antarctica HAL Sorbonne Université Atmospheric Measurement Techniques 14 6 4543 4564