Stochastic ensemble climate forecast with an analogue model
International audience This paper presents a system to perform large-ensemble climate stochastic forecasts. The system is based on random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast a North Atlantic Oscillation (NAO) index and the daily average tem...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
CCSD
2019
|
Subjects: | |
Online Access: | https://hal.science/hal-02902932 https://hal.science/hal-02902932v1/document https://hal.science/hal-02902932v1/file/gmd-12-723-2019.pdf https://doi.org/10.5194/gmd-12-723-2019 |
_version_ | 1826781304945901568 |
---|---|
author | Yiou, Pascal Déandreis, Céline |
author2 | Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Institut Pierre-Simon-Laplace (IPSL) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS) ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017) |
author_facet | Yiou, Pascal Déandreis, Céline |
author_sort | Yiou, Pascal |
collection | HAL Sorbonne Université |
container_issue | 2 |
container_start_page | 723 |
container_title | Geoscientific Model Development |
container_volume | 12 |
description | International audience This paper presents a system to perform large-ensemble climate stochastic forecasts. The system is based on random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast a North Atlantic Oscillation (NAO) index and the daily average temperature in five European stations. We simulated 100-member ensembles of averages over lead times from 5 days to 80 days in a hindcast mode, i.e., from a meteorological to a seasonal forecast. We tested the hindcast simulations with the usual forecast skill scores (CRPS or correlation) against persistence and climatology. We find significantly positive skill scores for all timescales. Although this model cannot out-perform numerical weather prediction, it presents an interesting benchmark that could complement climatology or persistence forecast. |
format | Article in Journal/Newspaper |
genre | North Atlantic North Atlantic oscillation |
genre_facet | North Atlantic North Atlantic oscillation |
id | ftsorbonneuniv:oai:HAL:hal-02902932v1 |
institution | Open Polar |
language | English |
op_collection_id | ftsorbonneuniv |
op_container_end_page | 734 |
op_doi | https://doi.org/10.5194/gmd-12-723-2019 |
op_relation | info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-12-723-2019 |
op_rights | info:eu-repo/semantics/OpenAccess |
op_source | ISSN: 1991-9603 EISSN: 1991-959X Geoscientific Model Development https://hal.science/hal-02902932 Geoscientific Model Development, 2019, 12 (2), pp.723-734. ⟨10.5194/gmd-12-723-2019⟩ |
publishDate | 2019 |
publisher | CCSD |
record_format | openpolar |
spelling | ftsorbonneuniv:oai:HAL:hal-02902932v1 2025-03-16T15:31:01+00:00 Stochastic ensemble climate forecast with an analogue model Yiou, Pascal Déandreis, Céline Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)) Institut Pierre-Simon-Laplace (IPSL) École normale supérieure - Paris (ENS-PSL) Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS) ANR-17-EURE-0006,IPSL-CGS,IPSL Climate graduate school(2017) 2019 https://hal.science/hal-02902932 https://hal.science/hal-02902932v1/document https://hal.science/hal-02902932v1/file/gmd-12-723-2019.pdf https://doi.org/10.5194/gmd-12-723-2019 en eng CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/gmd-12-723-2019 info:eu-repo/semantics/OpenAccess ISSN: 1991-9603 EISSN: 1991-959X Geoscientific Model Development https://hal.science/hal-02902932 Geoscientific Model Development, 2019, 12 (2), pp.723-734. ⟨10.5194/gmd-12-723-2019⟩ [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2019 ftsorbonneuniv https://doi.org/10.5194/gmd-12-723-2019 2025-02-14T01:07:05Z International audience This paper presents a system to perform large-ensemble climate stochastic forecasts. The system is based on random analogue sampling of sea-level pressure data from the NCEP reanalysis. It is tested to forecast a North Atlantic Oscillation (NAO) index and the daily average temperature in five European stations. We simulated 100-member ensembles of averages over lead times from 5 days to 80 days in a hindcast mode, i.e., from a meteorological to a seasonal forecast. We tested the hindcast simulations with the usual forecast skill scores (CRPS or correlation) against persistence and climatology. We find significantly positive skill scores for all timescales. Although this model cannot out-perform numerical weather prediction, it presents an interesting benchmark that could complement climatology or persistence forecast. Article in Journal/Newspaper North Atlantic North Atlantic oscillation HAL Sorbonne Université Geoscientific Model Development 12 2 723 734 |
spellingShingle | [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Yiou, Pascal Déandreis, Céline Stochastic ensemble climate forecast with an analogue model |
title | Stochastic ensemble climate forecast with an analogue model |
title_full | Stochastic ensemble climate forecast with an analogue model |
title_fullStr | Stochastic ensemble climate forecast with an analogue model |
title_full_unstemmed | Stochastic ensemble climate forecast with an analogue model |
title_short | Stochastic ensemble climate forecast with an analogue model |
title_sort | stochastic ensemble climate forecast with an analogue model |
topic | [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
topic_facet | [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere |
url | https://hal.science/hal-02902932 https://hal.science/hal-02902932v1/document https://hal.science/hal-02902932v1/file/gmd-12-723-2019.pdf https://doi.org/10.5194/gmd-12-723-2019 |