Exchange of Water Between the Ross Gyre and ACC Assessed by Lagrangian Particle Tracking

International audience To reach upwelling and downwelling zones deep within the Southern Ocean seasonal sea ice cover, water masses must move across the Antarctic Circumpolar Current and through current systems including the Ross Gyre, Weddell Gyre, and Antarctic Slope Current. In this study we focu...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Roach, Christopher J., Speer, Kevin
Other Authors: Variabilité de l'Océan et de la Glace de mer (VOG), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institute for Marine and Antarctic Studies Hobart (IMAS), University of Tasmania Hobart (UTAS), Florida State University Tallahassee (FSU)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-02520731
https://hal.science/hal-02520731v1/document
https://hal.science/hal-02520731v1/file/2018JC014845.pdf
https://doi.org/10.1029/2018JC014845
Description
Summary:International audience To reach upwelling and downwelling zones deep within the Southern Ocean seasonal sea ice cover, water masses must move across the Antarctic Circumpolar Current and through current systems including the Ross Gyre, Weddell Gyre, and Antarctic Slope Current. In this study we focus our attention on the Lagrangian exchange between the Ross Gyre and surrounding current systems. We conducted numerical experiments using five‐day 3‐D velocity fields from the Southern Ocean State Estimate with a particle tracking package to identify pathways by which waters move from near the Antarctic coastal margins or Antarctic Circumpolar Current into the interior of the Ross Gyre, and to identify the time scales of variability associated with these pathways. Waters from near the Antarctic margins enter the Ross Gyre along the western and northern boundaries of gyre until the gyre separates from the Pacific‐Antarctic Ridge near fracture zones. At this juncture, Antarctic Circumpolar Current‐derived inflow dominates the across‐gyre transport up to the Antarctic margin. Transport and exchange associated with different time‐average components of flow are calculated to determine the relative contributions of high‐ and low‐frequency and time‐mean components.