Polyphase rifting and break-up of the central Mozambique margin
International audience The break-up of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. Although plate kinematics during the oceanic spreading phase are well constrained, the initial...
Published in: | Marine and Petroleum Geology |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2019
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085/document https://hal.sorbonne-universite.fr/hal-02046085/file/1-s2.0-S0264817218304410-main.pdf https://doi.org/10.1016/j.marpetgeo.2018.10.035 |
id |
ftsorbonneuniv:oai:HAL:hal-02046085v1 |
---|---|
record_format |
openpolar |
spelling |
ftsorbonneuniv:oai:HAL:hal-02046085v1 2024-09-15T17:44:29+00:00 Polyphase rifting and break-up of the central Mozambique margin Senkans, A. Leroy, S. d'Acremont, E. Castilla, R. Despinois, F. Institut des Sciences de la Terre de Paris (iSTeP) Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Centre scientifique et Technique Jean Feger (CSTJF) TOTAL FINA ELF 2019 https://hal.sorbonne-universite.fr/hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085/document https://hal.sorbonne-universite.fr/hal-02046085/file/1-s2.0-S0264817218304410-main.pdf https://doi.org/10.1016/j.marpetgeo.2018.10.035 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.marpetgeo.2018.10.035 hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085/document https://hal.sorbonne-universite.fr/hal-02046085/file/1-s2.0-S0264817218304410-main.pdf doi:10.1016/j.marpetgeo.2018.10.035 info:eu-repo/semantics/OpenAccess ISSN: 0264-8172 Marine and Petroleum Geology https://hal.sorbonne-universite.fr/hal-02046085 Marine and Petroleum Geology, 2019, 100, pp.412-433. ⟨10.1016/j.marpetgeo.2018.10.035⟩ Beira high Gondwana breakup Mozambique margin Rifting Seismic interpretation Volcanic margin [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] info:eu-repo/semantics/article Journal articles 2019 ftsorbonneuniv https://doi.org/10.1016/j.marpetgeo.2018.10.035 2024-07-25T23:48:04Z International audience The break-up of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. Although plate kinematics during the oceanic spreading phase are well constrained, the initial fit of Africa and Antarctica, their earliest relative movements and margin architectures remain active areas of interest. This study uses high quality multi-channel seismic reflection profiles to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDRs) in the Angoche region, and magmatic sills and volcanoclastic material marking the Beira High. The Angoche and Beira regions possess faulted upper-continental crusts, with possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The Beira High segment reveals an offshore continental fragment, which is overlain by a faulted pre-rift sedimentary unit likely to belong to the Karoo Group. The combination of our seismic interpretation with existing geophysical and geological data has allowed us to propose a break-up model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The Beira High basement is formed by a strike-slip deformation along a proposed lithospheric weakness - the Lurio-Pebane shear zone. Northwestern-southeastern oriented extension follows and results in continental break-up and oceanic spreading. Our results suggest a segmentation of the Central Mozambique margin with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. Article in Journal/Newspaper Antarc* Antarctica HAL Sorbonne Université Marine and Petroleum Geology 100 412 433 |
institution |
Open Polar |
collection |
HAL Sorbonne Université |
op_collection_id |
ftsorbonneuniv |
language |
English |
topic |
Beira high Gondwana breakup Mozambique margin Rifting Seismic interpretation Volcanic margin [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] |
spellingShingle |
Beira high Gondwana breakup Mozambique margin Rifting Seismic interpretation Volcanic margin [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] Senkans, A. Leroy, S. d'Acremont, E. Castilla, R. Despinois, F. Polyphase rifting and break-up of the central Mozambique margin |
topic_facet |
Beira high Gondwana breakup Mozambique margin Rifting Seismic interpretation Volcanic margin [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] |
description |
International audience The break-up of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. Although plate kinematics during the oceanic spreading phase are well constrained, the initial fit of Africa and Antarctica, their earliest relative movements and margin architectures remain active areas of interest. This study uses high quality multi-channel seismic reflection profiles to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDRs) in the Angoche region, and magmatic sills and volcanoclastic material marking the Beira High. The Angoche and Beira regions possess faulted upper-continental crusts, with possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The Beira High segment reveals an offshore continental fragment, which is overlain by a faulted pre-rift sedimentary unit likely to belong to the Karoo Group. The combination of our seismic interpretation with existing geophysical and geological data has allowed us to propose a break-up model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The Beira High basement is formed by a strike-slip deformation along a proposed lithospheric weakness - the Lurio-Pebane shear zone. Northwestern-southeastern oriented extension follows and results in continental break-up and oceanic spreading. Our results suggest a segmentation of the Central Mozambique margin with oceanisation first occurring in the Angoche segment. The formation of the first oceanic crust in the Beira segment followed, likely delayed by the formation and failure of the northern Beira High rift. |
author2 |
Institut des Sciences de la Terre de Paris (iSTeP) Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) Centre scientifique et Technique Jean Feger (CSTJF) TOTAL FINA ELF |
format |
Article in Journal/Newspaper |
author |
Senkans, A. Leroy, S. d'Acremont, E. Castilla, R. Despinois, F. |
author_facet |
Senkans, A. Leroy, S. d'Acremont, E. Castilla, R. Despinois, F. |
author_sort |
Senkans, A. |
title |
Polyphase rifting and break-up of the central Mozambique margin |
title_short |
Polyphase rifting and break-up of the central Mozambique margin |
title_full |
Polyphase rifting and break-up of the central Mozambique margin |
title_fullStr |
Polyphase rifting and break-up of the central Mozambique margin |
title_full_unstemmed |
Polyphase rifting and break-up of the central Mozambique margin |
title_sort |
polyphase rifting and break-up of the central mozambique margin |
publisher |
HAL CCSD |
publishDate |
2019 |
url |
https://hal.sorbonne-universite.fr/hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085/document https://hal.sorbonne-universite.fr/hal-02046085/file/1-s2.0-S0264817218304410-main.pdf https://doi.org/10.1016/j.marpetgeo.2018.10.035 |
genre |
Antarc* Antarctica |
genre_facet |
Antarc* Antarctica |
op_source |
ISSN: 0264-8172 Marine and Petroleum Geology https://hal.sorbonne-universite.fr/hal-02046085 Marine and Petroleum Geology, 2019, 100, pp.412-433. ⟨10.1016/j.marpetgeo.2018.10.035⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.marpetgeo.2018.10.035 hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085 https://hal.sorbonne-universite.fr/hal-02046085/document https://hal.sorbonne-universite.fr/hal-02046085/file/1-s2.0-S0264817218304410-main.pdf doi:10.1016/j.marpetgeo.2018.10.035 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1016/j.marpetgeo.2018.10.035 |
container_title |
Marine and Petroleum Geology |
container_volume |
100 |
container_start_page |
412 |
op_container_end_page |
433 |
_version_ |
1810492087286628352 |