Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei

International audience Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in form...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Fossum, Kirsten N., Ovadnevaite, Jurgita, Ceburnis, Darius, Dall’osto, Manuel, Marullo, Salvatore, Bellacicco, Marco, Simo, Rafel, Liu, Dantong, Flynn, Michael, Zuend, Andreas, O’dowd, Colin
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-01885116
https://hal.sorbonne-universite.fr/hal-01885116/document
https://hal.sorbonne-universite.fr/hal-01885116/file/s41598-018-32047-4.pdf
https://doi.org/10.1038/s41598-018-32047-4
id ftsorbonneuniv:oai:HAL:hal-01885116v1
record_format openpolar
spelling ftsorbonneuniv:oai:HAL:hal-01885116v1 2024-09-15T17:43:23+00:00 Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei Fossum, Kirsten N. Ovadnevaite, Jurgita Ceburnis, Darius Dall’osto, Manuel Marullo, Salvatore Bellacicco, Marco Simo, Rafel Liu, Dantong Flynn, Michael Zuend, Andreas O’dowd, Colin Laboratoire d'océanographie de Villefranche (LOV) Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV) Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS) 2018 https://hal.sorbonne-universite.fr/hal-01885116 https://hal.sorbonne-universite.fr/hal-01885116/document https://hal.sorbonne-universite.fr/hal-01885116/file/s41598-018-32047-4.pdf https://doi.org/10.1038/s41598-018-32047-4 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-32047-4 hal-01885116 https://hal.sorbonne-universite.fr/hal-01885116 https://hal.sorbonne-universite.fr/hal-01885116/document https://hal.sorbonne-universite.fr/hal-01885116/file/s41598-018-32047-4.pdf doi:10.1038/s41598-018-32047-4 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2045-2322 EISSN: 2045-2322 Scientific Reports https://hal.sorbonne-universite.fr/hal-01885116 Scientific Reports, 2018, 8, pp.13844. &#x27E8;10.1038/s41598-018-32047-4&#x27E9; [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere info:eu-repo/semantics/article Journal articles 2018 ftsorbonneuniv https://doi.org/10.1038/s41598-018-32047-4 2024-07-25T23:48:05Z International audience Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%. Article in Journal/Newspaper Antarc* Antarctic Antarctica Southern Ocean HAL Sorbonne Université Scientific Reports 8 1
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
spellingShingle [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
Fossum, Kirsten N.
Ovadnevaite, Jurgita
Ceburnis, Darius
Dall’osto, Manuel
Marullo, Salvatore
Bellacicco, Marco
Simo, Rafel
Liu, Dantong
Flynn, Michael
Zuend, Andreas
O’dowd, Colin
Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
topic_facet [SDU.OCEAN]Sciences of the Universe [physics]/Ocean
Atmosphere
description International audience Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM1) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s−1. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%.
author2 Laboratoire d'océanographie de Villefranche (LOV)
Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Fossum, Kirsten N.
Ovadnevaite, Jurgita
Ceburnis, Darius
Dall’osto, Manuel
Marullo, Salvatore
Bellacicco, Marco
Simo, Rafel
Liu, Dantong
Flynn, Michael
Zuend, Andreas
O’dowd, Colin
author_facet Fossum, Kirsten N.
Ovadnevaite, Jurgita
Ceburnis, Darius
Dall’osto, Manuel
Marullo, Salvatore
Bellacicco, Marco
Simo, Rafel
Liu, Dantong
Flynn, Michael
Zuend, Andreas
O’dowd, Colin
author_sort Fossum, Kirsten N.
title Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_short Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_full Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_fullStr Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_full_unstemmed Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei
title_sort summertime primary and secondary contributions to southern ocean cloud condensation nuclei
publisher HAL CCSD
publishDate 2018
url https://hal.sorbonne-universite.fr/hal-01885116
https://hal.sorbonne-universite.fr/hal-01885116/document
https://hal.sorbonne-universite.fr/hal-01885116/file/s41598-018-32047-4.pdf
https://doi.org/10.1038/s41598-018-32047-4
genre Antarc*
Antarctic
Antarctica
Southern Ocean
genre_facet Antarc*
Antarctic
Antarctica
Southern Ocean
op_source ISSN: 2045-2322
EISSN: 2045-2322
Scientific Reports
https://hal.sorbonne-universite.fr/hal-01885116
Scientific Reports, 2018, 8, pp.13844. &#x27E8;10.1038/s41598-018-32047-4&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-32047-4
hal-01885116
https://hal.sorbonne-universite.fr/hal-01885116
https://hal.sorbonne-universite.fr/hal-01885116/document
https://hal.sorbonne-universite.fr/hal-01885116/file/s41598-018-32047-4.pdf
doi:10.1038/s41598-018-32047-4
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1038/s41598-018-32047-4
container_title Scientific Reports
container_volume 8
container_issue 1
_version_ 1810490351239036928