Iron in sea ice: Review and new insights

International audience The discovery that melting sea ice can fertilize iron (Fe)-depleted polar waters has recently fostered trace metal research efforts in sea ice. The aim of this review is to summarize and synthesize the current understanding of Fe biogeochemistry in sea ice. To do so, we compil...

Full description

Bibliographic Details
Published in:Elementa: Science of the Anthropocene
Main Authors: Lannuzel, Delphine, Vancoppenolle, Martin, van Der Merwe, Pier, de Jong, J., Meiners, Klaus M., Grotti, M., Nishioka, Jun, Schoemann, Véronique
Other Authors: Institute for Marine and Antarctic Studies Hobart (IMAS), University of Tasmania Hobart (UTAS), Nucleus for European Modeling of the Ocean (NEMO R&D), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Department of Geosciences, Environment and Society, Université libre de Bruxelles (ULB), Università degli studi di Genova = University of Genoa (UniGe), Institute of Low Temperature Science Sapporo, Hokkaido University Sapporo, Japan, SCOR WG 140-BEPSII, European Project: 321938,EC:FP7:PEOPLE,FP7-PEOPLE-2012-CIG,BISICLO(2012)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.science/hal-01836470
https://doi.org/10.12952/journal.elementa.000130
Description
Summary:International audience The discovery that melting sea ice can fertilize iron (Fe)-depleted polar waters has recently fostered trace metal research efforts in sea ice. The aim of this review is to summarize and synthesize the current understanding of Fe biogeochemistry in sea ice. To do so, we compiled available data on particulate, dissolved, and total dissolvable Fe (PFe, DFe and TDFe, respectively) from sea-ice studies from both polar regions and from sub-Arctic and northern Hemisphere temperate areas. Data analysis focused on a circum-Antarctic Fe dataset derived from 61 ice cores collected during 10 field expeditions carried out between 1997 and 2012 in the Southern Ocean. Our key findings are that 1) concentrations of all forms of Fe (PFe, DFe, TDFe) are at least a magnitude larger in fast ice and pack ice than in typical Antarctic surface waters; 2) DFe, PFe and TDFe behave differently when plotted against sea-ice salinity, suggesting that their distributions in sea ice are driven by distinct, spatially and temporally decoupled processes; 3) DFe is actively extracted from seawater into growing sea ice; 4) fast ice generally has more Fe-bearing particles, a finding supported by the significant negative correlation observed between both PFe and TDFe concentrations in sea ice and water depth; 5) the Fe pool in sea ice is coupled to biota, as indicated by the positive correlations of PFe and TDFe with chlorophyll a and particulate organic carbon; and 6) the vast majority of DFe appears to be adsorbed onto something in sea ice. This review also addresses the role of sea ice as a reservoir of Fe and its role in seeding seasonally ice-covered waters. We discuss the pivotal role of organic ligands in controlling DFe concentrations in sea ice and highlight the uncertainties that remain regarding the mechanisms of Fe incorporation in sea ice.