Particulate matter stoichiometry driven by microplankton community structure in summer in the Indian sector of the Southern Ocean

International audience Microplankton community structure and particulate matter stoichiometry were investigated in a late summer survey across the Subantarctic and Polar Front in the Indian sector of the Southern Ocean. Microplankton community structure exerted a first order control on PON:POP stoic...

Full description

Bibliographic Details
Published in:Limnology and Oceanography
Main Authors: Rembauville, M., Blain, S., Caparros, J., Salter, I.
Other Authors: Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire océanologique de Banyuls (OOB), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine (AWI), Helmholtz-Gemeinschaft = Helmholtz Association
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.sorbonne-universite.fr/hal-01298586
https://hal.sorbonne-universite.fr/hal-01298586/document
https://hal.sorbonne-universite.fr/hal-01298586/file/Rembauville_2016_Particulate_matter.pdf
https://doi.org/10.1002/lno.10291
Description
Summary:International audience Microplankton community structure and particulate matter stoichiometry were investigated in a late summer survey across the Subantarctic and Polar Front in the Indian sector of the Southern Ocean. Microplankton community structure exerted a first order control on PON:POP stoichiometry with diatom-dominated samples exhibiting much lower ratios (4–6) than dinoflagellate and ciliate-dominated samples (10–21). A significant fraction of the total chlorophyll a (30–70%) was located beneath the euphotic zone and mixed layer and sub-surface chlorophyll features were associated to transition layers. Although microplankton community structure and biomass was similar between mixed and transition layers, the latter was characterized by elevated Chl:POC ratios indicating photoacclimation of mixed layer communities. Empty diatom frustules, in particular of Fragilariopsis kerguelensis and Pseudo-nitzschia, were found to accumulate in the Antarctic Zone transition layer and were associated to elevated BSi:POC ratios. Furthermore, high Si(OH)4 diffusive fluxes (>1 mmol m2 d−1) into the transition layer appeared likely to sustain silicification. We suggest transition layers as key areas of C and Si decoupling through (1) physiological constraints on carbon and silicon fixation (2) as active foraging sites for grazers that preferentially remineralize carbon. On the Kerguelen Plateau, the dominant contribution of Chaetoceros Hyalochaete resting spores to microplankton biomass resulted in a three-fold enhancement of POC concentration at 250 m, compared to other stations. These findings further highlight the importance of diatom resting spores as a significant vector of carbon export through the intense remineralization horizons characteristing Southern Ocean ecosystems.