On the Classical Limit of the Schrödinger Equation

21 pages This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger t...

Full description

Bibliographic Details
Published in:Discrete and Continuous Dynamical Systems
Main Authors: Bardos, Claude, Golse, François, Markowich, Peter, Paul, Thierry
Other Authors: Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), MCSE Division, King Abdullah University of Science and Technology Saudi Arabia (KAUST)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://polytechnique.hal.science/hal-01074071
https://polytechnique.hal.science/hal-01074071/document
https://polytechnique.hal.science/hal-01074071/file/WKB.pdf
https://doi.org/10.3934/dcds.2015.35.5689
id ftsorbonneuniv:oai:HAL:hal-01074071v1
record_format openpolar
spelling ftsorbonneuniv:oai:HAL:hal-01074071v1 2024-09-15T18:17:30+00:00 On the Classical Limit of the Schrödinger Equation Bardos, Claude Golse, François Markowich, Peter Paul, Thierry Laboratoire Jacques-Louis Lions (LJLL) Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS) Centre de Mathématiques Laurent Schwartz (CMLS) École polytechnique (X) Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS) MCSE Division King Abdullah University of Science and Technology Saudi Arabia (KAUST) 2015-12 https://polytechnique.hal.science/hal-01074071 https://polytechnique.hal.science/hal-01074071/document https://polytechnique.hal.science/hal-01074071/file/WKB.pdf https://doi.org/10.3934/dcds.2015.35.5689 en eng HAL CCSD American Institute of Mathematical Sciences info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2015.35.5689 hal-01074071 https://polytechnique.hal.science/hal-01074071 https://polytechnique.hal.science/hal-01074071/document https://polytechnique.hal.science/hal-01074071/file/WKB.pdf doi:10.3934/dcds.2015.35.5689 info:eu-repo/semantics/OpenAccess ISSN: 1078-0947 EISSN: 1553-5231 Discrete and Continuous Dynamical Systems - Series A https://polytechnique.hal.science/hal-01074071 Discrete and Continuous Dynamical Systems - Series A, 2015, 35 (12), pp.5689-5709. ⟨10.3934/dcds.2015.35.5689⟩ Schrödinger equation Classical limit WKB expansion Caustic Fourier integral operators Lagrangian manifold Maslov index MSC 35Q41 81Q20 (35S30 53D12) [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] info:eu-repo/semantics/article Journal articles 2015 ftsorbonneuniv https://doi.org/10.3934/dcds.2015.35.5689 2024-08-01T23:46:54Z 21 pages This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749-766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index. Article in Journal/Newspaper laptev HAL Sorbonne Université Discrete and Continuous Dynamical Systems 35 12 5689 5709
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic Schrödinger equation
Classical limit
WKB expansion
Caustic
Fourier integral operators
Lagrangian manifold
Maslov index
MSC 35Q41
81Q20 (35S30
53D12)
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
spellingShingle Schrödinger equation
Classical limit
WKB expansion
Caustic
Fourier integral operators
Lagrangian manifold
Maslov index
MSC 35Q41
81Q20 (35S30
53D12)
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
Bardos, Claude
Golse, François
Markowich, Peter
Paul, Thierry
On the Classical Limit of the Schrödinger Equation
topic_facet Schrödinger equation
Classical limit
WKB expansion
Caustic
Fourier integral operators
Lagrangian manifold
Maslov index
MSC 35Q41
81Q20 (35S30
53D12)
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
description 21 pages This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749-766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.
author2 Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Centre de Mathématiques Laurent Schwartz (CMLS)
École polytechnique (X)
Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
MCSE Division
King Abdullah University of Science and Technology Saudi Arabia (KAUST)
format Article in Journal/Newspaper
author Bardos, Claude
Golse, François
Markowich, Peter
Paul, Thierry
author_facet Bardos, Claude
Golse, François
Markowich, Peter
Paul, Thierry
author_sort Bardos, Claude
title On the Classical Limit of the Schrödinger Equation
title_short On the Classical Limit of the Schrödinger Equation
title_full On the Classical Limit of the Schrödinger Equation
title_fullStr On the Classical Limit of the Schrödinger Equation
title_full_unstemmed On the Classical Limit of the Schrödinger Equation
title_sort on the classical limit of the schrödinger equation
publisher HAL CCSD
publishDate 2015
url https://polytechnique.hal.science/hal-01074071
https://polytechnique.hal.science/hal-01074071/document
https://polytechnique.hal.science/hal-01074071/file/WKB.pdf
https://doi.org/10.3934/dcds.2015.35.5689
genre laptev
genre_facet laptev
op_source ISSN: 1078-0947
EISSN: 1553-5231
Discrete and Continuous Dynamical Systems - Series A
https://polytechnique.hal.science/hal-01074071
Discrete and Continuous Dynamical Systems - Series A, 2015, 35 (12), pp.5689-5709. ⟨10.3934/dcds.2015.35.5689⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.3934/dcds.2015.35.5689
hal-01074071
https://polytechnique.hal.science/hal-01074071
https://polytechnique.hal.science/hal-01074071/document
https://polytechnique.hal.science/hal-01074071/file/WKB.pdf
doi:10.3934/dcds.2015.35.5689
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.3934/dcds.2015.35.5689
container_title Discrete and Continuous Dynamical Systems
container_volume 35
container_issue 12
container_start_page 5689
op_container_end_page 5709
_version_ 1810455523651223552