Using transport diagnostics to understand chemistry climate model ozone simulations

International audience We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Strahan, S. E., Douglass, A. R., Stolarski, R. S., Akiyoshi, H., Bekki, Slimane, Braesicke, P., Butchart, N., Chipperfield, M. P., Cugnet, David, Dhomse, S., Frith, S. M., Gettelman, A., Hardiman, S. C., Kinnison, D. E., Lamarque, J.-F., Mancini, E., Marchand, Marion, Michou, M., Morgenstern, Olaf, Nakamura, T., Olivié, D., Pawson, S., Pitari, G., Plummer, D. A., Pyle, J. A., Scinocca, J. F., Shepherd, T. G., Shibata, K., Smale, Dan, Teyssèdre, H., Tian, W., Yamashita, Y.
Other Authors: Universities Space Research Association Washington (USRA), NASA Goddard Space Flight Center (GSFC), National Institute for Environmental Studies (NIES), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre for Atmospheric Science Cambridge, UK, University of Cambridge UK (CAM), Met Office Hadley Centre (MOHC), United Kingdom Met Office Exeter, School of Earth and Environment Leeds (SEE), University of Leeds, Science Systems and Applications, Inc. Lanham (SSAI), National Center for Atmospheric Research Boulder (NCAR), University of L'Aquila Italy (UNIVAQ), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS), National Institute of Water and Atmospheric Research Lauder (NIWA), Department of Geosciences Oslo, Faculty of Mathematics and Natural Sciences Oslo, University of Oslo (UiO)-University of Oslo (UiO), Canadian Centre for Climate Modelling and Analysis (CCCma), Environment and Climate Change Canada (ECCC), Department of Physics Toronto, University of Toronto, Meteorological Research Institute Tsukuba (MRI), Japan Meteorological Agency (JMA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.science/hal-00621937
https://hal.science/hal-00621937/document
https://hal.science/hal-00621937/file/2010JD015360.pdf
https://doi.org/10.1029/2010JD015360
id ftsorbonneuniv:oai:HAL:hal-00621937v1
record_format openpolar
institution Open Polar
collection HAL Sorbonne Université
op_collection_id ftsorbonneuniv
language English
topic Stratospheric transport
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
spellingShingle Stratospheric transport
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
Strahan, S. E.
Douglass, A. R.
Stolarski, R. S.
Akiyoshi, H.
Bekki, Slimane
Braesicke, P.
Butchart, N.
Chipperfield, M. P.
Cugnet, David
Dhomse, S.
Frith, S. M.
Gettelman, A.
Hardiman, S. C.
Kinnison, D. E.
Lamarque, J.-F.
Mancini, E.
Marchand, Marion
Michou, M.
Morgenstern, Olaf
Nakamura, T.
Olivié, D.
Pawson, S.
Pitari, G.
Plummer, D. A.
Pyle, J. A.
Scinocca, J. F.
Shepherd, T. G.
Shibata, K.
Smale, Dan
Teyssèdre, H.
Tian, W.
Yamashita, Y.
Using transport diagnostics to understand chemistry climate model ozone simulations
topic_facet Stratospheric transport
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
description International audience We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process-oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model's ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return-to-1980 dates for global (60°S-60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model's circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies.
author2 Universities Space Research Association Washington (USRA)
NASA Goddard Space Flight Center (GSFC)
National Institute for Environmental Studies (NIES)
STRATO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre for Atmospheric Science Cambridge, UK
University of Cambridge UK (CAM)
Met Office Hadley Centre (MOHC)
United Kingdom Met Office Exeter
School of Earth and Environment Leeds (SEE)
University of Leeds
Science Systems and Applications, Inc. Lanham (SSAI)
National Center for Atmospheric Research Boulder (NCAR)
University of L'Aquila Italy (UNIVAQ)
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)
National Institute of Water and Atmospheric Research Lauder (NIWA)
Department of Geosciences Oslo
Faculty of Mathematics and Natural Sciences Oslo
University of Oslo (UiO)-University of Oslo (UiO)
Canadian Centre for Climate Modelling and Analysis (CCCma)
Environment and Climate Change Canada (ECCC)
Department of Physics Toronto
University of Toronto
Meteorological Research Institute Tsukuba (MRI)
Japan Meteorological Agency (JMA)
format Article in Journal/Newspaper
author Strahan, S. E.
Douglass, A. R.
Stolarski, R. S.
Akiyoshi, H.
Bekki, Slimane
Braesicke, P.
Butchart, N.
Chipperfield, M. P.
Cugnet, David
Dhomse, S.
Frith, S. M.
Gettelman, A.
Hardiman, S. C.
Kinnison, D. E.
Lamarque, J.-F.
Mancini, E.
Marchand, Marion
Michou, M.
Morgenstern, Olaf
Nakamura, T.
Olivié, D.
Pawson, S.
Pitari, G.
Plummer, D. A.
Pyle, J. A.
Scinocca, J. F.
Shepherd, T. G.
Shibata, K.
Smale, Dan
Teyssèdre, H.
Tian, W.
Yamashita, Y.
author_facet Strahan, S. E.
Douglass, A. R.
Stolarski, R. S.
Akiyoshi, H.
Bekki, Slimane
Braesicke, P.
Butchart, N.
Chipperfield, M. P.
Cugnet, David
Dhomse, S.
Frith, S. M.
Gettelman, A.
Hardiman, S. C.
Kinnison, D. E.
Lamarque, J.-F.
Mancini, E.
Marchand, Marion
Michou, M.
Morgenstern, Olaf
Nakamura, T.
Olivié, D.
Pawson, S.
Pitari, G.
Plummer, D. A.
Pyle, J. A.
Scinocca, J. F.
Shepherd, T. G.
Shibata, K.
Smale, Dan
Teyssèdre, H.
Tian, W.
Yamashita, Y.
author_sort Strahan, S. E.
title Using transport diagnostics to understand chemistry climate model ozone simulations
title_short Using transport diagnostics to understand chemistry climate model ozone simulations
title_full Using transport diagnostics to understand chemistry climate model ozone simulations
title_fullStr Using transport diagnostics to understand chemistry climate model ozone simulations
title_full_unstemmed Using transport diagnostics to understand chemistry climate model ozone simulations
title_sort using transport diagnostics to understand chemistry climate model ozone simulations
publisher HAL CCSD
publishDate 2011
url https://hal.science/hal-00621937
https://hal.science/hal-00621937/document
https://hal.science/hal-00621937/file/2010JD015360.pdf
https://doi.org/10.1029/2010JD015360
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 2169-897X
EISSN: 2169-8996
Journal of Geophysical Research: Atmospheres
https://hal.science/hal-00621937
Journal of Geophysical Research: Atmospheres, 2011, 116 (D17), pp.D17302. ⟨10.1029/2010JD015360⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2010JD015360
hal-00621937
https://hal.science/hal-00621937
https://hal.science/hal-00621937/document
https://hal.science/hal-00621937/file/2010JD015360.pdf
doi:10.1029/2010JD015360
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1029/2010JD015360
container_title Journal of Geophysical Research
container_volume 116
container_issue D17
_version_ 1810489159116128256
spelling ftsorbonneuniv:oai:HAL:hal-00621937v1 2024-09-15T17:42:32+00:00 Using transport diagnostics to understand chemistry climate model ozone simulations Strahan, S. E. Douglass, A. R. Stolarski, R. S. Akiyoshi, H. Bekki, Slimane Braesicke, P. Butchart, N. Chipperfield, M. P. Cugnet, David Dhomse, S. Frith, S. M. Gettelman, A. Hardiman, S. C. Kinnison, D. E. Lamarque, J.-F. Mancini, E. Marchand, Marion Michou, M. Morgenstern, Olaf Nakamura, T. Olivié, D. Pawson, S. Pitari, G. Plummer, D. A. Pyle, J. A. Scinocca, J. F. Shepherd, T. G. Shibata, K. Smale, Dan Teyssèdre, H. Tian, W. Yamashita, Y. Universities Space Research Association Washington (USRA) NASA Goddard Space Flight Center (GSFC) National Institute for Environmental Studies (NIES) STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Centre for Atmospheric Science Cambridge, UK University of Cambridge UK (CAM) Met Office Hadley Centre (MOHC) United Kingdom Met Office Exeter School of Earth and Environment Leeds (SEE) University of Leeds Science Systems and Applications, Inc. Lanham (SSAI) National Center for Atmospheric Research Boulder (NCAR) University of L'Aquila Italy (UNIVAQ) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) National Institute of Water and Atmospheric Research Lauder (NIWA) Department of Geosciences Oslo Faculty of Mathematics and Natural Sciences Oslo University of Oslo (UiO)-University of Oslo (UiO) Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) Department of Physics Toronto University of Toronto Meteorological Research Institute Tsukuba (MRI) Japan Meteorological Agency (JMA) 2011 https://hal.science/hal-00621937 https://hal.science/hal-00621937/document https://hal.science/hal-00621937/file/2010JD015360.pdf https://doi.org/10.1029/2010JD015360 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2010JD015360 hal-00621937 https://hal.science/hal-00621937 https://hal.science/hal-00621937/document https://hal.science/hal-00621937/file/2010JD015360.pdf doi:10.1029/2010JD015360 info:eu-repo/semantics/OpenAccess ISSN: 2169-897X EISSN: 2169-8996 Journal of Geophysical Research: Atmospheres https://hal.science/hal-00621937 Journal of Geophysical Research: Atmospheres, 2011, 116 (D17), pp.D17302. ⟨10.1029/2010JD015360⟩ Stratospheric transport [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology info:eu-repo/semantics/article Journal articles 2011 ftsorbonneuniv https://doi.org/10.1029/2010JD015360 2024-07-25T23:47:58Z International audience We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process-oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model's ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return-to-1980 dates for global (60°S-60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model's circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies. Article in Journal/Newspaper Antarc* Antarctic HAL Sorbonne Université Journal of Geophysical Research 116 D17