Chemistry-climate model simulations of spring Antarctic ozone
International audience Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montr...
Published in: | Journal of Geophysical Research |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2010
|
Subjects: | |
Online Access: | https://hal.science/hal-00510726 https://hal.science/hal-00510726/document https://hal.science/hal-00510726/file/2009JD013577.pdf https://doi.org/10.1029/2009JD013577 |
id |
ftsorbonneuniv:oai:HAL:hal-00510726v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
HAL Sorbonne Université |
op_collection_id |
ftsorbonneuniv |
language |
English |
topic |
Antarctic ozone hole [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
spellingShingle |
Antarctic ozone hole [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] Austin, J. Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. Bekki, Slimane Bodeker, G. Braesicke, P. Bruhl, C. Butchart, N. Chipperfield, M. P. Cugnet, David Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Jockel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, Marion Michou, M. Morgenstern, Olaf Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, Dan Teyssedre, H. Yamashita, Y. Chemistry-climate model simulations of spring Antarctic ozone |
topic_facet |
Antarctic ozone hole [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] |
description |
International audience Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070. |
author2 |
NOAA Geophysical Fluid Dynamics Laboratory (GFDL) National Oceanic and Atmospheric Administration (NOAA) University Corporation for Atmospheric Research (UCAR) Stockholm University Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) National Institute for Environmental Studies (NIES) Max Planck Institute for Chemistry (MPIC) Max-Planck-Gesellschaft STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Bodeker Scientific NCAS-Climate Cambridge Department of Chemistry Cambridge, UK University of Cambridge UK (CAM)-University of Cambridge UK (CAM) United Kingdom Met Office Exeter School of Earth and Environment Leeds (SEE) University of Leeds DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics (IPA) Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR) NASA Goddard Space Flight Center (GSFC) Science Systems and Applications, Inc. Lanham (SSAI) National Center for Atmospheric Research Boulder (NCAR) Institut für Meteorologie Berlin Freie Universität Berlin University of L'Aquila Italy (UNIVAQ) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) National Institute of Water and Atmospheric Research Lauder (NIWA) Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) Institute for Atmospheric and Climate Science Zürich (IAC) Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich) Department of Physics Toronto University of Toronto Meteorological Research Institute Tsukuba (MRI) Japan Meteorological Agency (JMA) |
format |
Article in Journal/Newspaper |
author |
Austin, J. Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. Bekki, Slimane Bodeker, G. Braesicke, P. Bruhl, C. Butchart, N. Chipperfield, M. P. Cugnet, David Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Jockel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, Marion Michou, M. Morgenstern, Olaf Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, Dan Teyssedre, H. Yamashita, Y. |
author_facet |
Austin, J. Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. Bekki, Slimane Bodeker, G. Braesicke, P. Bruhl, C. Butchart, N. Chipperfield, M. P. Cugnet, David Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Jockel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, Marion Michou, M. Morgenstern, Olaf Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, Dan Teyssedre, H. Yamashita, Y. |
author_sort |
Austin, J. |
title |
Chemistry-climate model simulations of spring Antarctic ozone |
title_short |
Chemistry-climate model simulations of spring Antarctic ozone |
title_full |
Chemistry-climate model simulations of spring Antarctic ozone |
title_fullStr |
Chemistry-climate model simulations of spring Antarctic ozone |
title_full_unstemmed |
Chemistry-climate model simulations of spring Antarctic ozone |
title_sort |
chemistry-climate model simulations of spring antarctic ozone |
publisher |
HAL CCSD |
publishDate |
2010 |
url |
https://hal.science/hal-00510726 https://hal.science/hal-00510726/document https://hal.science/hal-00510726/file/2009JD013577.pdf https://doi.org/10.1029/2009JD013577 |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_source |
ISSN: 2169-897X EISSN: 2169-8996 Journal of Geophysical Research: Atmospheres https://hal.science/hal-00510726 Journal of Geophysical Research: Atmospheres, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1029/2009JD013577 hal-00510726 https://hal.science/hal-00510726 https://hal.science/hal-00510726/document https://hal.science/hal-00510726/file/2009JD013577.pdf doi:10.1029/2009JD013577 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1029/2009JD013577 |
container_title |
Journal of Geophysical Research |
container_volume |
115 |
_version_ |
1810495522197209088 |
spelling |
ftsorbonneuniv:oai:HAL:hal-00510726v1 2024-09-15T17:47:02+00:00 Chemistry-climate model simulations of spring Antarctic ozone Austin, J. Struthers, H. Scinocca, J. Plummer, D. A. Akiyoshi, H. Baumgaertner, A. Bekki, Slimane Bodeker, G. Braesicke, P. Bruhl, C. Butchart, N. Chipperfield, M. P. Cugnet, David Dameris, M. Dhomse, S. Frith, S. Garny, H. Gettelman, A. Hardiman, S. C. Jockel, P. Kinnison, D. Kubin, A. Lamarque, J. F. Langematz, U. Mancini, E. Marchand, Marion Michou, M. Morgenstern, Olaf Nakamura, T. Nielsen, J. E. Pitari, G. Pyle, J. Rozanov, E. Shepherd, T. G. Shibata, K. Smale, Dan Teyssedre, H. Yamashita, Y. NOAA Geophysical Fluid Dynamics Laboratory (GFDL) National Oceanic and Atmospheric Administration (NOAA) University Corporation for Atmospheric Research (UCAR) Stockholm University Canadian Centre for Climate Modelling and Analysis (CCCma) Environment and Climate Change Canada (ECCC) National Institute for Environmental Studies (NIES) Max Planck Institute for Chemistry (MPIC) Max-Planck-Gesellschaft STRATO - LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) Bodeker Scientific NCAS-Climate Cambridge Department of Chemistry Cambridge, UK University of Cambridge UK (CAM)-University of Cambridge UK (CAM) United Kingdom Met Office Exeter School of Earth and Environment Leeds (SEE) University of Leeds DLR Institut für Physik der Atmosphäre = DLR Institute of Atmospheric Physics (IPA) Deutsches Zentrum für Luft- und Raumfahrt Oberpfaffenhofen-Wessling (DLR) NASA Goddard Space Flight Center (GSFC) Science Systems and Applications, Inc. Lanham (SSAI) National Center for Atmospheric Research Boulder (NCAR) Institut für Meteorologie Berlin Freie Universität Berlin University of L'Aquila Italy (UNIVAQ) Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS) National Institute of Water and Atmospheric Research Lauder (NIWA) Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC) Institute for Atmospheric and Climate Science Zürich (IAC) Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology Zürich (ETH Zürich) Department of Physics Toronto University of Toronto Meteorological Research Institute Tsukuba (MRI) Japan Meteorological Agency (JMA) 2010 https://hal.science/hal-00510726 https://hal.science/hal-00510726/document https://hal.science/hal-00510726/file/2009JD013577.pdf https://doi.org/10.1029/2009JD013577 en eng HAL CCSD American Geophysical Union info:eu-repo/semantics/altIdentifier/doi/10.1029/2009JD013577 hal-00510726 https://hal.science/hal-00510726 https://hal.science/hal-00510726/document https://hal.science/hal-00510726/file/2009JD013577.pdf doi:10.1029/2009JD013577 info:eu-repo/semantics/OpenAccess ISSN: 2169-897X EISSN: 2169-8996 Journal of Geophysical Research: Atmospheres https://hal.science/hal-00510726 Journal of Geophysical Research: Atmospheres, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩ Antarctic ozone hole [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] info:eu-repo/semantics/article Journal articles 2010 ftsorbonneuniv https://doi.org/10.1029/2009JD013577 2024-07-25T23:47:58Z International audience Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070. Article in Journal/Newspaper Antarc* Antarctic HAL Sorbonne Université Journal of Geophysical Research 115 |