Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change

Carbon-isotope measurements ([delta]13C) of leaf-wax n-alkanes from the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, reveal a negative carbon isotope excursion (CIE) of 4-5[per mille sign], which is 1-2[per mille sign] larger than that observed in marine carbonate [delta]13...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Smith, Francesca A., Wing, Scott L., Freeman, Katherine H.
Format: Article in Journal/Newspaper
Language:English
Published: 2007
Subjects:
Online Access:http://hdl.handle.net/10088/5992
https://doi.org/10.1016/j.epsl.2007.07.021
id ftsmithonian:oai:repository.si.edu:10088/5992
record_format openpolar
spelling ftsmithonian:oai:repository.si.edu:10088/5992 2023-05-15T18:01:14+02:00 Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change Smith, Francesca A. Wing, Scott L. Freeman, Katherine H. 2007 793327 bytes application/pdf http://hdl.handle.net/10088/5992 https://doi.org/10.1016/j.epsl.2007.07.021 en_US eng Earth and Planetary Science Letters Smith, Francesca A., Wing, Scott L., and Freeman, Katherine H. 2007. " Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change ." Earth and Planetary Science Letters . 262 (1-2):50–65. https://doi.org/10.1016/j.epsl.2007.07.021 0012-821X http://hdl.handle.net/10088/5992 73180 doi:10.1016/j.epsl.2007.07.021 Journal Article 2007 ftsmithonian https://doi.org/10.1016/j.epsl.2007.07.021 2020-09-09T18:30:02Z Carbon-isotope measurements ([delta]13C) of leaf-wax n-alkanes from the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, reveal a negative carbon isotope excursion (CIE) of 4-5[per mille sign], which is 1-2[per mille sign] larger than that observed in marine carbonate [delta]13C records. Reconciling these records requires either that marine carbonates fail to record the full magnitude of the CIE or that the CIE in plants has been amplified relative to the marine. Amplification of the CIE has been proposed to result from an increase in available moisture that allowed terrestrial plants to increase 13C-discrimination during the PETM. Leaf physiognomy, paleopedology and hydrogen isotope ratios of leaf-wax lipids from the Bighorn Basin, however, all suggest that rather than a simple increase in available moisture, climate alternated between wet and dry during the PETM. Here we consider two other explanations and test them quantitatively with the carbon isotopic record of plant lipids. The "marine modification" hypothesis is that the marine carbonate record was modified by chemical changes at the PETM and that plant lipids record the true magnitude of the CIE. Using atmospheric CO2 [delta]13C values estimated from the lipid record, and equilibrium fractionation between CO2 and carbonate, we estimate the expected CIE for planktonic foraminifera to be 6[per mille sign]. Instead, the largest excursion observed is about 4[per mille sign]. No mechanism for altering marine carbonate by 2[per mille sign] has been identified and we thus reject this explanation. The "plant community change" hypothesis is that major changes in floral composition during the PETM amplified the CIE observed in n-alkanes by 1-2[per mille sign] relative to marine carbonate. This effect could have been caused by a rapid transition from a mixed angiosperm/conifer flora to a purely angiosperm flora. The plant community change hypothesis is consistent with both the magnitude and pattern of CIE amplification among the different n-alkanes, and with data from fossil plants. This hypothesis predicts that the magnitude and pattern of amplification of CIEs among different n-alkanes will vary regionally and systematically depending on the extent of the replacement of conifers by angiosperms during the PETM. NMNH NH-Paleobiology Article in Journal/Newspaper Planktonic foraminifera Unknown Earth and Planetary Science Letters 262 1-2 50 65
institution Open Polar
collection Unknown
op_collection_id ftsmithonian
language English
description Carbon-isotope measurements ([delta]13C) of leaf-wax n-alkanes from the Paleocene-Eocene Thermal Maximum (PETM) in the Bighorn Basin, Wyoming, reveal a negative carbon isotope excursion (CIE) of 4-5[per mille sign], which is 1-2[per mille sign] larger than that observed in marine carbonate [delta]13C records. Reconciling these records requires either that marine carbonates fail to record the full magnitude of the CIE or that the CIE in plants has been amplified relative to the marine. Amplification of the CIE has been proposed to result from an increase in available moisture that allowed terrestrial plants to increase 13C-discrimination during the PETM. Leaf physiognomy, paleopedology and hydrogen isotope ratios of leaf-wax lipids from the Bighorn Basin, however, all suggest that rather than a simple increase in available moisture, climate alternated between wet and dry during the PETM. Here we consider two other explanations and test them quantitatively with the carbon isotopic record of plant lipids. The "marine modification" hypothesis is that the marine carbonate record was modified by chemical changes at the PETM and that plant lipids record the true magnitude of the CIE. Using atmospheric CO2 [delta]13C values estimated from the lipid record, and equilibrium fractionation between CO2 and carbonate, we estimate the expected CIE for planktonic foraminifera to be 6[per mille sign]. Instead, the largest excursion observed is about 4[per mille sign]. No mechanism for altering marine carbonate by 2[per mille sign] has been identified and we thus reject this explanation. The "plant community change" hypothesis is that major changes in floral composition during the PETM amplified the CIE observed in n-alkanes by 1-2[per mille sign] relative to marine carbonate. This effect could have been caused by a rapid transition from a mixed angiosperm/conifer flora to a purely angiosperm flora. The plant community change hypothesis is consistent with both the magnitude and pattern of CIE amplification among the different n-alkanes, and with data from fossil plants. This hypothesis predicts that the magnitude and pattern of amplification of CIEs among different n-alkanes will vary regionally and systematically depending on the extent of the replacement of conifers by angiosperms during the PETM. NMNH NH-Paleobiology
format Article in Journal/Newspaper
author Smith, Francesca A.
Wing, Scott L.
Freeman, Katherine H.
spellingShingle Smith, Francesca A.
Wing, Scott L.
Freeman, Katherine H.
Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
author_facet Smith, Francesca A.
Wing, Scott L.
Freeman, Katherine H.
author_sort Smith, Francesca A.
title Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
title_short Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
title_full Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
title_fullStr Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
title_full_unstemmed Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change
title_sort magnitude of the carbon isotope excursion at the paleocene-eocene thermal maximum: the role of plant community change
publishDate 2007
url http://hdl.handle.net/10088/5992
https://doi.org/10.1016/j.epsl.2007.07.021
genre Planktonic foraminifera
genre_facet Planktonic foraminifera
op_relation Earth and Planetary Science Letters
Smith, Francesca A., Wing, Scott L., and Freeman, Katherine H. 2007. " Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change ." Earth and Planetary Science Letters . 262 (1-2):50–65. https://doi.org/10.1016/j.epsl.2007.07.021
0012-821X
http://hdl.handle.net/10088/5992
73180
doi:10.1016/j.epsl.2007.07.021
op_doi https://doi.org/10.1016/j.epsl.2007.07.021
container_title Earth and Planetary Science Letters
container_volume 262
container_issue 1-2
container_start_page 50
op_container_end_page 65
_version_ 1766170606745681920