Molecular systematics and Holarctic phylogeography of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) in lemmings (Lemmus, Synaptomys)

The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) from arvicoline rodents (...

Full description

Bibliographic Details
Published in:Zoologica Scripta
Main Authors: Haukisalmi, Voitto, Hardman, Lotta M., Fedorov, Vadim B., Hoberg, Eric P., Henttonen, Heikki
Format: Article in Journal/Newspaper
Language:unknown
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10088/28015
https://doi.org/10.1111/zsc.12136
Description
Summary:The present molecular systematic and phylogeographic analysis is based on sequences of cytochrome c oxidase subunit 1 (cox1) (mtDNA) and 28S ribosomal DNA and includes 59 isolates of cestodes of the genus Anoplocephaloides Baer, 1923 s. s. (Cyclophyllidea, Anoplocephalidae) from arvicoline rodents (lemmings and voles) in the Holarctic region. The emphasis is on Anoplocephaloides lemmi (Rausch 1952) parasitizing Lemmus trimucronatus and Lemmus sibiricus in the northern parts of North America and Arctic coast of Siberia, and Anoplocephaloides kontrimavichusi (Rausch 1976) parasitizing Synaptomys borealis in Alaska and British Columbia. The cox1 data, 28S data and their concatenated data all suggest that A. lemmi and A. kontrimavichusi are both non-monophyletic, each consisting of two separate, well-defined clades, that is independent species. As an example, the sister group of the clade 1 of A. lemmi, evidently representing the type clade of this species, is the clade 1 of A. kontrimavichusi. For A. kontrimavichusi, it is not known which one is the type clade. There is also fairly strong evidence for the non-monophyly of Anoplocephaloides dentata (Galli-Valerio, 1905)-like species, although an earlier phylogeny suggested that this multispecies assemblage may be monophyletic. The results suggest a deep phylogenetic codivergence of Lemmus spp. and A. lemmi, primarily separating the two largely allopatric host and parasite species at the Kolyma River in east Siberia. There are also two allopatric sublineages within each main clade/species of A. lemmi and Lemmus, but the present distributions of the sublineages within the eastern L. trimucronatus and clade 1 of A. lemmi are not concordant. This discrepancy may be most parsimoniously explained by an extensive westward distributional shift of the easternmost parasite subclade. The results further suggest that the clade 1 of A. kontrimavichusi has diverged through a host shift from the precursor of L. trimucronatus to S. borealis. NH-Entomology NMNH Peer-reviewed