Direct Observation of Anthracene Clusters at Ice Surfaces

Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field...

Full description

Bibliographic Details
Main Authors: Subha Chakraborty (5348522), Annastacia D. Stubbs (7831757), Tara F. Kahan (2071705)
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 1753
Subjects:
Online Access:https://doi.org/10.1021/jacs.1c09220.s001
Description
Summary:Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field observations in snow-covered regions due in part to experimental challenges associated with monitoring reactions at air–ice interfaces, and debate regarding reaction kinetics and mechanisms has persisted for over a decade. In this work, we use wavelength-resolved fluorescence microscopy to determine the distribution and chemical speciation of the pollutant anthracene at environmentally relevant frozen surfaces. Our results indicate that anthracene adsorbs to frozen surfaces in monomeric form, but that following lateral diffusion, molecules ultimately reside within brine channels at saltwater ice surfaces, and in micron-sized clusters at freshwater ice surfaces; emission profiles indicate extensive self-association. We also measure anthracene photodegradation kinetics in aqueous solution and artificial snow prepared from frozen freshwater and saltwater solutions. Our results suggest that anthraceneand likely other aromatic pollutantsundergo bimolecular photodegradation at the surface of freshwater ice and sea ice, but not at the surface of frozen organic matter. These results will improve predictions of pollutant fate and exposure risk in the cryosphere. The techniques used can be applied to numerous surfaces within and beyond the atmospheric sciences.