Conceptual framework of the study design.

This study includes 3 main analytical steps: (i) the investigation of the associations between circulating levels of metabolites and kidney cancer risk using pre-diagnostic measurements in a case–control study nested within multiple large-scale prospective cohorts; (ii) the assessment of the causal...

Full description

Bibliographic Details
Main Authors: Florence Guida (3431048), Vanessa Y. Tan (7756985), Laura J. Corbin (6260339), Karl Smith-Byrne (9975677), Karine Alcala (11457761), Claudia Langenberg (160616), Isobel D. Stewart (3368624), Adam S. Butterworth (7658036), Praveen Surendran (7783877), David Achaintre (783484), Jerzy Adamski (127482), Pilar Amiano (23583), Manuela M. Bergmann (7500068), Caroline J. Bull (8654428), Christina C. Dahm (9530014), Audrey Gicquiau (1790689), Graham G. Giles (7242467), Marc J. Gunter (8654437), Toomas Haller (527037), Arnulf Langhammer (75692), Tricia L. Larose (3337074), Börje Ljungberg (72551), Andres Metspalu (61760), Roger L. Milne (7802576), David C. Muller (7730171), Therese H. Nøst (1366620), Elin Pettersen Sørgjerd (9166847), Cornelia Prehn (137977), Elio Riboli (23604), Sabina Rinaldi (115134), Joseph A. Rothwell (548948), Augustin Scalbert (188861), Julie A. Schmidt (10217182), Gianluca Severi (89918), Sabina Sieri (229287), Roel Vermeulen (68721), Emma E. Vincent (7639052), Melanie Waldenberger (236985), Nicholas J. Timpson (7243103), Mattias Johansson (158504)
Format: Still Image
Language:unknown
Published: 2021
Subjects:
Online Access:https://doi.org/10.1371/journal.pmed.1003786.g001
id ftsmithonian:oai:figshare.com:article/16648121
record_format openpolar
spelling ftsmithonian:oai:figshare.com:article/16648121 2023-05-15T17:45:11+02:00 Conceptual framework of the study design. Florence Guida (3431048) Vanessa Y. Tan (7756985) Laura J. Corbin (6260339) Karl Smith-Byrne (9975677) Karine Alcala (11457761) Claudia Langenberg (160616) Isobel D. Stewart (3368624) Adam S. Butterworth (7658036) Praveen Surendran (7783877) David Achaintre (783484) Jerzy Adamski (127482) Pilar Amiano (23583) Manuela M. Bergmann (7500068) Caroline J. Bull (8654428) Christina C. Dahm (9530014) Audrey Gicquiau (1790689) Graham G. Giles (7242467) Marc J. Gunter (8654437) Toomas Haller (527037) Arnulf Langhammer (75692) Tricia L. Larose (3337074) Börje Ljungberg (72551) Andres Metspalu (61760) Roger L. Milne (7802576) David C. Muller (7730171) Therese H. Nøst (1366620) Elin Pettersen Sørgjerd (9166847) Cornelia Prehn (137977) Elio Riboli (23604) Sabina Rinaldi (115134) Joseph A. Rothwell (548948) Augustin Scalbert (188861) Julie A. Schmidt (10217182) Gianluca Severi (89918) Sabina Sieri (229287) Roel Vermeulen (68721) Emma E. Vincent (7639052) Melanie Waldenberger (236985) Nicholas J. Timpson (7243103) Mattias Johansson (158504) 2021-09-20T17:48:14Z https://doi.org/10.1371/journal.pmed.1003786.g001 unknown https://figshare.com/articles/figure/Conceptual_framework_of_the_study_design_/16648121 doi:10.1371/journal.pmed.1003786.g001 CC BY 4.0 CC-BY Biochemistry Medicine Cell Biology Genetics Molecular Biology Biotechnology Marine Biology Cancer Infectious Diseases Mathematical Sciences not elsewhere classified sup >&# 8722 related metabolic perturbations case &# 8211 body mass index average 8 years 6 × 10 5 × 10 4 × 10 4 amino acids predispose kidney cancer kidney cancer aetiology incident kidney cancer developing kidney cancer including 8 phosphatidylcholines elevated bmi appeared diagnostic blood samples bmi partly attenuated bmi &# 8212 1 standard deviation known risk factors potentially important role pc ae c34 palmitoyl )- 2 blood metabolome highlighted 17 sd change kidney cancer risk 1 -( 1 identify circulating metabolites ci ]: 0 kidney cancer blood metabolome blood collection 1 sd circulating levels xlink "> wide range robust across positively associated poorly understood participating studies odds ratio observed associations minimal impact metabolites associated mendelian randomisation inversely associated including glutamate european descent confidence interval also associated alcohol consumption 416 metabolites 2 plasmalogens 14 glycerophospholipids Image Figure 2021 ftsmithonian https://doi.org/10.1371/journal.pmed.1003786.g001 2021-12-20T01:52:08Z This study includes 3 main analytical steps: (i) the investigation of the associations between circulating levels of metabolites and kidney cancer risk using pre-diagnostic measurements in a case–control study nested within multiple large-scale prospective cohorts; (ii) the assessment of the causal effect of BMI, the leading modifiable risk factor for kidney cancer, on circulating metabolites levels; and (iii) the evaluation of the overlap between the metabolic footprint of BMI and that of kidney cancer risk. The orange X’s indicate the time at which a participant is diagnosed with kidney cancer when his follow-up is stopped. Controls have been selected among participants free of cancer at the time their matched case was diagnosed. Metabolites from all samples have been measured on the Biocrates platform, while only samples from EPIC and NSHDS cohorts have been measured with Metabolon platform. BMI, body mass index; EPIC, The European Prospective Investigation into Cancer and Nutrition; Estonian BB, University of Tartu—Estonian Biobank; HUNT, The Trøndelag Health Study; LC–MS, liquid chromatography–tandem mass spectrometry; MCCS, The Melbourne Collaborative Cohort Study; MR, mendelian randomisation; NSHDS, Northern Sweden Health and Disease study; SNP, single nucleotide polymorphism. Still Image Northern Sweden Unknown
institution Open Polar
collection Unknown
op_collection_id ftsmithonian
language unknown
topic Biochemistry
Medicine
Cell Biology
Genetics
Molecular Biology
Biotechnology
Marine Biology
Cancer
Infectious Diseases
Mathematical Sciences not elsewhere classified
sup >&# 8722
related metabolic perturbations
case &# 8211
body mass index
average 8 years
6 × 10
5 × 10
4 × 10
4 amino acids
predispose kidney cancer
kidney cancer aetiology
incident kidney cancer
developing kidney cancer
including 8 phosphatidylcholines
elevated bmi appeared
diagnostic blood samples
bmi partly attenuated
bmi &# 8212
1 standard deviation
known risk factors
potentially important role
pc ae c34
palmitoyl )- 2
blood metabolome highlighted
17 sd change
kidney cancer risk
1 -( 1
identify circulating metabolites
ci ]: 0
kidney cancer
blood metabolome
blood collection
1 sd
circulating levels
xlink ">
wide range
robust across
positively associated
poorly understood
participating studies
odds ratio
observed associations
minimal impact
metabolites associated
mendelian randomisation
inversely associated
including glutamate
european descent
confidence interval
also associated
alcohol consumption
416 metabolites
2 plasmalogens
14 glycerophospholipids
spellingShingle Biochemistry
Medicine
Cell Biology
Genetics
Molecular Biology
Biotechnology
Marine Biology
Cancer
Infectious Diseases
Mathematical Sciences not elsewhere classified
sup >&# 8722
related metabolic perturbations
case &# 8211
body mass index
average 8 years
6 × 10
5 × 10
4 × 10
4 amino acids
predispose kidney cancer
kidney cancer aetiology
incident kidney cancer
developing kidney cancer
including 8 phosphatidylcholines
elevated bmi appeared
diagnostic blood samples
bmi partly attenuated
bmi &# 8212
1 standard deviation
known risk factors
potentially important role
pc ae c34
palmitoyl )- 2
blood metabolome highlighted
17 sd change
kidney cancer risk
1 -( 1
identify circulating metabolites
ci ]: 0
kidney cancer
blood metabolome
blood collection
1 sd
circulating levels
xlink ">
wide range
robust across
positively associated
poorly understood
participating studies
odds ratio
observed associations
minimal impact
metabolites associated
mendelian randomisation
inversely associated
including glutamate
european descent
confidence interval
also associated
alcohol consumption
416 metabolites
2 plasmalogens
14 glycerophospholipids
Florence Guida (3431048)
Vanessa Y. Tan (7756985)
Laura J. Corbin (6260339)
Karl Smith-Byrne (9975677)
Karine Alcala (11457761)
Claudia Langenberg (160616)
Isobel D. Stewart (3368624)
Adam S. Butterworth (7658036)
Praveen Surendran (7783877)
David Achaintre (783484)
Jerzy Adamski (127482)
Pilar Amiano (23583)
Manuela M. Bergmann (7500068)
Caroline J. Bull (8654428)
Christina C. Dahm (9530014)
Audrey Gicquiau (1790689)
Graham G. Giles (7242467)
Marc J. Gunter (8654437)
Toomas Haller (527037)
Arnulf Langhammer (75692)
Tricia L. Larose (3337074)
Börje Ljungberg (72551)
Andres Metspalu (61760)
Roger L. Milne (7802576)
David C. Muller (7730171)
Therese H. Nøst (1366620)
Elin Pettersen Sørgjerd (9166847)
Cornelia Prehn (137977)
Elio Riboli (23604)
Sabina Rinaldi (115134)
Joseph A. Rothwell (548948)
Augustin Scalbert (188861)
Julie A. Schmidt (10217182)
Gianluca Severi (89918)
Sabina Sieri (229287)
Roel Vermeulen (68721)
Emma E. Vincent (7639052)
Melanie Waldenberger (236985)
Nicholas J. Timpson (7243103)
Mattias Johansson (158504)
Conceptual framework of the study design.
topic_facet Biochemistry
Medicine
Cell Biology
Genetics
Molecular Biology
Biotechnology
Marine Biology
Cancer
Infectious Diseases
Mathematical Sciences not elsewhere classified
sup >&# 8722
related metabolic perturbations
case &# 8211
body mass index
average 8 years
6 × 10
5 × 10
4 × 10
4 amino acids
predispose kidney cancer
kidney cancer aetiology
incident kidney cancer
developing kidney cancer
including 8 phosphatidylcholines
elevated bmi appeared
diagnostic blood samples
bmi partly attenuated
bmi &# 8212
1 standard deviation
known risk factors
potentially important role
pc ae c34
palmitoyl )- 2
blood metabolome highlighted
17 sd change
kidney cancer risk
1 -( 1
identify circulating metabolites
ci ]: 0
kidney cancer
blood metabolome
blood collection
1 sd
circulating levels
xlink ">
wide range
robust across
positively associated
poorly understood
participating studies
odds ratio
observed associations
minimal impact
metabolites associated
mendelian randomisation
inversely associated
including glutamate
european descent
confidence interval
also associated
alcohol consumption
416 metabolites
2 plasmalogens
14 glycerophospholipids
description This study includes 3 main analytical steps: (i) the investigation of the associations between circulating levels of metabolites and kidney cancer risk using pre-diagnostic measurements in a case–control study nested within multiple large-scale prospective cohorts; (ii) the assessment of the causal effect of BMI, the leading modifiable risk factor for kidney cancer, on circulating metabolites levels; and (iii) the evaluation of the overlap between the metabolic footprint of BMI and that of kidney cancer risk. The orange X’s indicate the time at which a participant is diagnosed with kidney cancer when his follow-up is stopped. Controls have been selected among participants free of cancer at the time their matched case was diagnosed. Metabolites from all samples have been measured on the Biocrates platform, while only samples from EPIC and NSHDS cohorts have been measured with Metabolon platform. BMI, body mass index; EPIC, The European Prospective Investigation into Cancer and Nutrition; Estonian BB, University of Tartu—Estonian Biobank; HUNT, The Trøndelag Health Study; LC–MS, liquid chromatography–tandem mass spectrometry; MCCS, The Melbourne Collaborative Cohort Study; MR, mendelian randomisation; NSHDS, Northern Sweden Health and Disease study; SNP, single nucleotide polymorphism.
format Still Image
author Florence Guida (3431048)
Vanessa Y. Tan (7756985)
Laura J. Corbin (6260339)
Karl Smith-Byrne (9975677)
Karine Alcala (11457761)
Claudia Langenberg (160616)
Isobel D. Stewart (3368624)
Adam S. Butterworth (7658036)
Praveen Surendran (7783877)
David Achaintre (783484)
Jerzy Adamski (127482)
Pilar Amiano (23583)
Manuela M. Bergmann (7500068)
Caroline J. Bull (8654428)
Christina C. Dahm (9530014)
Audrey Gicquiau (1790689)
Graham G. Giles (7242467)
Marc J. Gunter (8654437)
Toomas Haller (527037)
Arnulf Langhammer (75692)
Tricia L. Larose (3337074)
Börje Ljungberg (72551)
Andres Metspalu (61760)
Roger L. Milne (7802576)
David C. Muller (7730171)
Therese H. Nøst (1366620)
Elin Pettersen Sørgjerd (9166847)
Cornelia Prehn (137977)
Elio Riboli (23604)
Sabina Rinaldi (115134)
Joseph A. Rothwell (548948)
Augustin Scalbert (188861)
Julie A. Schmidt (10217182)
Gianluca Severi (89918)
Sabina Sieri (229287)
Roel Vermeulen (68721)
Emma E. Vincent (7639052)
Melanie Waldenberger (236985)
Nicholas J. Timpson (7243103)
Mattias Johansson (158504)
author_facet Florence Guida (3431048)
Vanessa Y. Tan (7756985)
Laura J. Corbin (6260339)
Karl Smith-Byrne (9975677)
Karine Alcala (11457761)
Claudia Langenberg (160616)
Isobel D. Stewart (3368624)
Adam S. Butterworth (7658036)
Praveen Surendran (7783877)
David Achaintre (783484)
Jerzy Adamski (127482)
Pilar Amiano (23583)
Manuela M. Bergmann (7500068)
Caroline J. Bull (8654428)
Christina C. Dahm (9530014)
Audrey Gicquiau (1790689)
Graham G. Giles (7242467)
Marc J. Gunter (8654437)
Toomas Haller (527037)
Arnulf Langhammer (75692)
Tricia L. Larose (3337074)
Börje Ljungberg (72551)
Andres Metspalu (61760)
Roger L. Milne (7802576)
David C. Muller (7730171)
Therese H. Nøst (1366620)
Elin Pettersen Sørgjerd (9166847)
Cornelia Prehn (137977)
Elio Riboli (23604)
Sabina Rinaldi (115134)
Joseph A. Rothwell (548948)
Augustin Scalbert (188861)
Julie A. Schmidt (10217182)
Gianluca Severi (89918)
Sabina Sieri (229287)
Roel Vermeulen (68721)
Emma E. Vincent (7639052)
Melanie Waldenberger (236985)
Nicholas J. Timpson (7243103)
Mattias Johansson (158504)
author_sort Florence Guida (3431048)
title Conceptual framework of the study design.
title_short Conceptual framework of the study design.
title_full Conceptual framework of the study design.
title_fullStr Conceptual framework of the study design.
title_full_unstemmed Conceptual framework of the study design.
title_sort conceptual framework of the study design.
publishDate 2021
url https://doi.org/10.1371/journal.pmed.1003786.g001
genre Northern Sweden
genre_facet Northern Sweden
op_relation https://figshare.com/articles/figure/Conceptual_framework_of_the_study_design_/16648121
doi:10.1371/journal.pmed.1003786.g001
op_rights CC BY 4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.1371/journal.pmed.1003786.g001
_version_ 1766147998060904448