Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF

Yellowfin seabream, Acanthopagrus latus, is one of the most important species in terms of stock enhancement in China. However, using metagenomic techniques to explore the feeding habits and stomach microbiome of yellowfin seabream is still rare. The objective of this work was to study the feeding ha...

Full description

Bibliographic Details
Main Authors: Wanni Pan (10089895), Chuanxin Qin (10089898), Tao Zuo (350509), Gang Yu (202259), Wentao Zhu (477548), Hongmei Ma (2742121), Shigai Xi (10089901)
Format: Still Image
Language:unknown
Published: 2021
Subjects:
Online Access:https://doi.org/10.3389/fmars.2021.634651.s003
id ftsmithonian:oai:figshare.com:article/13705669
record_format openpolar
spelling ftsmithonian:oai:figshare.com:article/13705669 2023-05-15T18:15:53+02:00 Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF Wanni Pan (10089895) Chuanxin Qin (10089898) Tao Zuo (350509) Gang Yu (202259) Wentao Zhu (477548) Hongmei Ma (2742121) Shigai Xi (10089901) 2021-02-03T16:19:33Z https://doi.org/10.3389/fmars.2021.634651.s003 unknown https://figshare.com/articles/figure/Image_3_Is_Metagenomic_Analysis_an_Effective_Way_to_Analyze_Fish_Feeding_Habits_A_Case_of_the_Yellowfin_Sea_Bream_Acanthopagrus_latus_Houttuyn_in_Daya_Bay_TIF/13705669 doi:10.3389/fmars.2021.634651.s003 CC BY 4.0 CC-BY Oceanography Marine Biology Marine Geoscience Biological Oceanography Chemical Oceanography Physical Oceanography Marine Engineering yellowfin sea bream metagenomic analysis feeding habits stomach microbiome stomach content Image Figure 2021 ftsmithonian https://doi.org/10.3389/fmars.2021.634651.s003 2021-02-26T12:23:57Z Yellowfin seabream, Acanthopagrus latus, is one of the most important species in terms of stock enhancement in China. However, using metagenomic techniques to explore the feeding habits and stomach microbiome of yellowfin seabream is still rare. The objective of this work was to study the feeding habits and stomach microbiome of yellowfin sea bream from Daya Bay through metagenomic analysis of different weight classes (≤50, 50–100, and >100 g). Whole-metagenome shotgun sequencing and morphological observation were used to investigate the stomach contents. The dietary composition and the community composition of the stomach microbiome of A. latus were examined. In this study, 153 species were detected in the eukaryotic composition of the stomach contents of yellowfin sea bream. At the species level, Mytilus edulis was the only species identified by both metagenomic analysis and morphological observation. The proportion of fish and bivalves was over 98%, but the diet changed little with body size. Larimichthys crocea, Scophthalmus maximus, and Seriola dumerili were the most abundant species among all samples. In total, 285 species were identified in the stomach microbiome of yellowfin sea bream. Bacterium 2013Ark19i, bacterium 2013Arg42i and Acinetobacter baumannii, first reported in the stomach contents of yellowfin sea bream, were the most abundant species of the stomach microbiomes. There was no difference in the biodiversity of the stomach microbiomes among the different body sizes. Overall, the composition of the yellowfin sea bream diet mainly consists of fish and bivalves. The use of metagenomics techniques is a promising approach for assessing the feeding habits of yellowfin sea bream. The results derived from this study can provide important information for evaluating the feeding ecology of yellowfin sea bream in Daya Bay. Still Image Scophthalmus maximus Unknown
institution Open Polar
collection Unknown
op_collection_id ftsmithonian
language unknown
topic Oceanography
Marine Biology
Marine Geoscience
Biological Oceanography
Chemical Oceanography
Physical Oceanography
Marine Engineering
yellowfin sea bream
metagenomic analysis
feeding habits
stomach microbiome
stomach content
spellingShingle Oceanography
Marine Biology
Marine Geoscience
Biological Oceanography
Chemical Oceanography
Physical Oceanography
Marine Engineering
yellowfin sea bream
metagenomic analysis
feeding habits
stomach microbiome
stomach content
Wanni Pan (10089895)
Chuanxin Qin (10089898)
Tao Zuo (350509)
Gang Yu (202259)
Wentao Zhu (477548)
Hongmei Ma (2742121)
Shigai Xi (10089901)
Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
topic_facet Oceanography
Marine Biology
Marine Geoscience
Biological Oceanography
Chemical Oceanography
Physical Oceanography
Marine Engineering
yellowfin sea bream
metagenomic analysis
feeding habits
stomach microbiome
stomach content
description Yellowfin seabream, Acanthopagrus latus, is one of the most important species in terms of stock enhancement in China. However, using metagenomic techniques to explore the feeding habits and stomach microbiome of yellowfin seabream is still rare. The objective of this work was to study the feeding habits and stomach microbiome of yellowfin sea bream from Daya Bay through metagenomic analysis of different weight classes (≤50, 50–100, and >100 g). Whole-metagenome shotgun sequencing and morphological observation were used to investigate the stomach contents. The dietary composition and the community composition of the stomach microbiome of A. latus were examined. In this study, 153 species were detected in the eukaryotic composition of the stomach contents of yellowfin sea bream. At the species level, Mytilus edulis was the only species identified by both metagenomic analysis and morphological observation. The proportion of fish and bivalves was over 98%, but the diet changed little with body size. Larimichthys crocea, Scophthalmus maximus, and Seriola dumerili were the most abundant species among all samples. In total, 285 species were identified in the stomach microbiome of yellowfin sea bream. Bacterium 2013Ark19i, bacterium 2013Arg42i and Acinetobacter baumannii, first reported in the stomach contents of yellowfin sea bream, were the most abundant species of the stomach microbiomes. There was no difference in the biodiversity of the stomach microbiomes among the different body sizes. Overall, the composition of the yellowfin sea bream diet mainly consists of fish and bivalves. The use of metagenomics techniques is a promising approach for assessing the feeding habits of yellowfin sea bream. The results derived from this study can provide important information for evaluating the feeding ecology of yellowfin sea bream in Daya Bay.
format Still Image
author Wanni Pan (10089895)
Chuanxin Qin (10089898)
Tao Zuo (350509)
Gang Yu (202259)
Wentao Zhu (477548)
Hongmei Ma (2742121)
Shigai Xi (10089901)
author_facet Wanni Pan (10089895)
Chuanxin Qin (10089898)
Tao Zuo (350509)
Gang Yu (202259)
Wentao Zhu (477548)
Hongmei Ma (2742121)
Shigai Xi (10089901)
author_sort Wanni Pan (10089895)
title Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
title_short Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
title_full Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
title_fullStr Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
title_full_unstemmed Image_3_Is Metagenomic Analysis an Effective Way to Analyze Fish Feeding Habits? A Case of the Yellowfin Sea Bream Acanthopagrus latus (Houttuyn) in Daya Bay.TIF
title_sort image_3_is metagenomic analysis an effective way to analyze fish feeding habits? a case of the yellowfin sea bream acanthopagrus latus (houttuyn) in daya bay.tif
publishDate 2021
url https://doi.org/10.3389/fmars.2021.634651.s003
genre Scophthalmus maximus
genre_facet Scophthalmus maximus
op_relation https://figshare.com/articles/figure/Image_3_Is_Metagenomic_Analysis_an_Effective_Way_to_Analyze_Fish_Feeding_Habits_A_Case_of_the_Yellowfin_Sea_Bream_Acanthopagrus_latus_Houttuyn_in_Daya_Bay_TIF/13705669
doi:10.3389/fmars.2021.634651.s003
op_rights CC BY 4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3389/fmars.2021.634651.s003
_version_ 1766189138168512512