Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data

The quantification of vegetation height for the circumpolar Arctic tundra biome is of interest for a wide range of applications, including biomass and habitat studies as well as permafrost modelling in the context of climate change. To date, only indices from multispectral data have been used in the...

Full description

Bibliographic Details
Main Authors: Bartsch, Annett, Widhalm, Barbara, Leibman, Marina, Emorkhina, Ksenia, Kumpula, Timo, Skarin, Anna, Wilcox, Evan J., Jones, Benjamin M., Frost, Gerald V., Höfler, Angelika, Pointner, Georg
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://pub.epsilon.slu.se/16745/
https://pub.epsilon.slu.se/16745/1/bartsch_a_et_al_200305.pdf
id ftslunivuppsala:oai:pub.epsilon.slu.se:16745
record_format openpolar
spelling ftslunivuppsala:oai:pub.epsilon.slu.se:16745 2023-05-15T14:55:23+02:00 Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data Bartsch, Annett Widhalm, Barbara Leibman, Marina Emorkhina, Ksenia Kumpula, Timo Skarin, Anna Wilcox, Evan J. Jones, Benjamin M. Frost, Gerald V. Höfler, Angelika Pointner, Georg 2020 application/pdf https://pub.epsilon.slu.se/16745/ https://pub.epsilon.slu.se/16745/1/bartsch_a_et_al_200305.pdf en eng eng https://pub.epsilon.slu.se/16745/1/bartsch_a_et_al_200305.pdf Bartsch, Annett and Widhalm, Barbara and Leibman, Marina and Emorkhina, Ksenia and Kumpula, Timo and Skarin, Anna and Wilcox, Evan J. and Jones, Benjamin M. and Frost, Gerald V. and Höfler, Angelika and Pointner, Georg (2020). Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment. 237 , 1-19 [Research article] cc_by_4 CC-BY Remote Sensing Research article NonPeerReviewed info:eu-repo/semantics/article 2020 ftslunivuppsala 2022-01-09T19:15:05Z The quantification of vegetation height for the circumpolar Arctic tundra biome is of interest for a wide range of applications, including biomass and habitat studies as well as permafrost modelling in the context of climate change. To date, only indices from multispectral data have been used in these environments to address biomass and vegetation changes over time. The retrieval of vegetation height itself has not been attempted so far over larger areas. Synthetic Aperture Radar (SAR) holds promise for canopy modeling over large extents, but the high variability of near-surface soil moisture during the snow-free season is a major challenge for application of SAR in tundra for such a purpose. We hypothesized that tundra vegetation height can be derived from multispectral indices as well as from C-band SAR data acquired in winter (close to zero liquid water content). To test our hypothesis, we used C-band SAR data from Sentinel-1 and multi-spectral data from Sentinel-2. Results show that vegetation height can be derived with an RMSE of 44 cm from Normalized Difference Vegetation Index (NDVI) and 54 cm from Tasseled Cap Wetness index (TC). Retrieval from C-band SAR shows similar performance, but C-VV is more suitable than C-HH to derive vegetation height (RMSEs of 48 and 56 cm respectively). An exponential relationship with in situ height was evident for all tested parameters (NDVI, TC, C-VV and C-HH) suggesting that the C-band SAR and multi-spectral approaches possess similar capabilities including tundra biomass retrieval. Errors might occur in specific settings as a result of high surface roughness, high photosynthetic activity in wetlands or high snow density. We therefore introduce a method for combined use of Sentinel-1 and Sentinel-2 to address the ambiguities related to Arctic wetlands and barren rockfields. Snow-related deviations occur within tundra fire scars in permafrost areas in the case of C-VV use. The impact decreases with age of the fire scar, following permafrost and vegetation recovery. The evaluation of masked C-VV retrievals across different regions, tundra types and sources (in situ and circumpolar vegetation community classification from satellite data) suggests pan-Arctic applicability to map current conditions for heights up to 160 cm. The presented methodology will allow for new applications and provide advanced insight into changing environmental conditions in the Arctic. Article in Journal/Newspaper Arctic Climate change permafrost Tundra Swedish University of Agricultural Sciences (SLU): Epsilon Open Archive Arctic
institution Open Polar
collection Swedish University of Agricultural Sciences (SLU): Epsilon Open Archive
op_collection_id ftslunivuppsala
language English
topic Remote Sensing
spellingShingle Remote Sensing
Bartsch, Annett
Widhalm, Barbara
Leibman, Marina
Emorkhina, Ksenia
Kumpula, Timo
Skarin, Anna
Wilcox, Evan J.
Jones, Benjamin M.
Frost, Gerald V.
Höfler, Angelika
Pointner, Georg
Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
topic_facet Remote Sensing
description The quantification of vegetation height for the circumpolar Arctic tundra biome is of interest for a wide range of applications, including biomass and habitat studies as well as permafrost modelling in the context of climate change. To date, only indices from multispectral data have been used in these environments to address biomass and vegetation changes over time. The retrieval of vegetation height itself has not been attempted so far over larger areas. Synthetic Aperture Radar (SAR) holds promise for canopy modeling over large extents, but the high variability of near-surface soil moisture during the snow-free season is a major challenge for application of SAR in tundra for such a purpose. We hypothesized that tundra vegetation height can be derived from multispectral indices as well as from C-band SAR data acquired in winter (close to zero liquid water content). To test our hypothesis, we used C-band SAR data from Sentinel-1 and multi-spectral data from Sentinel-2. Results show that vegetation height can be derived with an RMSE of 44 cm from Normalized Difference Vegetation Index (NDVI) and 54 cm from Tasseled Cap Wetness index (TC). Retrieval from C-band SAR shows similar performance, but C-VV is more suitable than C-HH to derive vegetation height (RMSEs of 48 and 56 cm respectively). An exponential relationship with in situ height was evident for all tested parameters (NDVI, TC, C-VV and C-HH) suggesting that the C-band SAR and multi-spectral approaches possess similar capabilities including tundra biomass retrieval. Errors might occur in specific settings as a result of high surface roughness, high photosynthetic activity in wetlands or high snow density. We therefore introduce a method for combined use of Sentinel-1 and Sentinel-2 to address the ambiguities related to Arctic wetlands and barren rockfields. Snow-related deviations occur within tundra fire scars in permafrost areas in the case of C-VV use. The impact decreases with age of the fire scar, following permafrost and vegetation recovery. The evaluation of masked C-VV retrievals across different regions, tundra types and sources (in situ and circumpolar vegetation community classification from satellite data) suggests pan-Arctic applicability to map current conditions for heights up to 160 cm. The presented methodology will allow for new applications and provide advanced insight into changing environmental conditions in the Arctic.
format Article in Journal/Newspaper
author Bartsch, Annett
Widhalm, Barbara
Leibman, Marina
Emorkhina, Ksenia
Kumpula, Timo
Skarin, Anna
Wilcox, Evan J.
Jones, Benjamin M.
Frost, Gerald V.
Höfler, Angelika
Pointner, Georg
author_facet Bartsch, Annett
Widhalm, Barbara
Leibman, Marina
Emorkhina, Ksenia
Kumpula, Timo
Skarin, Anna
Wilcox, Evan J.
Jones, Benjamin M.
Frost, Gerald V.
Höfler, Angelika
Pointner, Georg
author_sort Bartsch, Annett
title Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
title_short Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
title_full Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
title_fullStr Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
title_full_unstemmed Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data
title_sort feasibility of tundra vegetation height retrieval from sentinel-1 and sentinel-2 data
publishDate 2020
url https://pub.epsilon.slu.se/16745/
https://pub.epsilon.slu.se/16745/1/bartsch_a_et_al_200305.pdf
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
permafrost
Tundra
genre_facet Arctic
Climate change
permafrost
Tundra
op_relation https://pub.epsilon.slu.se/16745/1/bartsch_a_et_al_200305.pdf
Bartsch, Annett and Widhalm, Barbara and Leibman, Marina and Emorkhina, Ksenia and Kumpula, Timo and Skarin, Anna and Wilcox, Evan J. and Jones, Benjamin M. and Frost, Gerald V. and Höfler, Angelika and Pointner, Georg (2020). Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment. 237 , 1-19 [Research article]
op_rights cc_by_4
op_rightsnorm CC-BY
_version_ 1766327180197888000