Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach

District heating for the capital area of Iceland heavily relies on geothermal water, with one of the key components being the deep well pump network located in Reykjahlíð, Mosfellsdalur, near Reykjavík. However, the network’s operation is yet to be fully optimized for overall efficiency. The combina...

Full description

Bibliographic Details
Main Author: Friðrik Tryggvi Róbertsson 1997-
Other Authors: Háskólinn í Reykjavík
Format: Master Thesis
Language:English
Published: 2024
Subjects:
Online Access:https://hdl.handle.net/1946/48707
_version_ 1821557899719081984
author Friðrik Tryggvi Róbertsson 1997-
author2 Háskólinn í Reykjavík
author_facet Friðrik Tryggvi Róbertsson 1997-
author_sort Friðrik Tryggvi Róbertsson 1997-
collection Skemman (Iceland)
description District heating for the capital area of Iceland heavily relies on geothermal water, with one of the key components being the deep well pump network located in Reykjahlíð, Mosfellsdalur, near Reykjavík. However, the network’s operation is yet to be fully optimized for overall efficiency. The combination of electric submersible pumps (ESPs) and vertical shaft pumps (VSPs) presents a computationally intensive optimization challenge. This work addresses the challenge by integrating a hydraulic simulation model, developed using Epanet, with the Dueling Deep Q-network (DQN) architecture, in which the neural network functions as a core component, serving as a function approximator to optimize the complex, non-linear relationship between fluid flow and power consumption, achieving a multi-objective goal. Two distinct approaches are explored, with the more successful yielding a 6.5% reduction in the network’s power consumption compared to the current operation, while accurately meeting demand. This optimization is performed in near real-time, making it highly suitable for the fluctuating demand conditions typical of district heating systems. Hitaveitan á höfuðborgarsvæðinu byggir mikið á nýtingu jarðhita, einn af lykilþáttum hita veitunnar er djúpdælukerfi sem staðsett er í Reykjahlíð í Mosfellsdal. Enn á þó eftir að fullkomna virkni kerfisins til að ná fram hámarks heildarnýtni. Dælukerfið samanstendur af háspenntum djúpdælum og öxuldælum. Það að uppsetning dælukerfisins innihaldi mis munandi gerðir dæla með mismunandi stýringum gerir það að verkum að bestun kerfisins verður þung í útreikningi. Í þessari ritgerð er leitast við að ná fram hagræðingu með því að samþætta vökvahermilíkan, þróað með Epanet, við Dueling Deep Q-Network (DQN) að ferð, þar sem taugakerfið er notað sem nálgunarfall á flókna, ólínulega og ókúpta sambandi vatnsflæðis og orkunotkunar. Tvær útfærslur eru skoðaðar, sú árangursríkasta skilar 6,5% lækkun á orkunotkun kerfisins miðað við núverandi virkni, en uppfyllir jafnframt eftirspurn á nákvæman ...
format Master Thesis
genre Iceland
Reykjavík
Reykjavík
genre_facet Iceland
Reykjavík
Reykjavík
geographic Reykjahlíð
Reykjavík
geographic_facet Reykjahlíð
Reykjavík
id ftskemman:oai:skemman.is:1946/48707
institution Open Polar
language English
long_lat ENVELOPE(-16.912,-16.912,65.642,65.642)
op_collection_id ftskemman
op_relation https://hdl.handle.net/1946/48707
publishDate 2024
record_format openpolar
spelling ftskemman:oai:skemman.is:1946/48707 2025-01-16T22:41:05+00:00 Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach Bestun á stýringu djúpdælna í lághita vatnsöflun: Nálgun með Dueling Deep Q-Network Friðrik Tryggvi Róbertsson 1997- Háskólinn í Reykjavík 2024-10 application/pdf https://hdl.handle.net/1946/48707 en eng https://hdl.handle.net/1946/48707 Vélaverkfræði Meistaraprófsritgerðir Jarðhitanýting Bestun Dælur Orkunotkun Mechanical engineering Geothermal space heating Mathematical optimization Pumping machinery Reinforcement Learning Heating from central stations Thesis Master's 2024 ftskemman 2024-10-23T00:02:50Z District heating for the capital area of Iceland heavily relies on geothermal water, with one of the key components being the deep well pump network located in Reykjahlíð, Mosfellsdalur, near Reykjavík. However, the network’s operation is yet to be fully optimized for overall efficiency. The combination of electric submersible pumps (ESPs) and vertical shaft pumps (VSPs) presents a computationally intensive optimization challenge. This work addresses the challenge by integrating a hydraulic simulation model, developed using Epanet, with the Dueling Deep Q-network (DQN) architecture, in which the neural network functions as a core component, serving as a function approximator to optimize the complex, non-linear relationship between fluid flow and power consumption, achieving a multi-objective goal. Two distinct approaches are explored, with the more successful yielding a 6.5% reduction in the network’s power consumption compared to the current operation, while accurately meeting demand. This optimization is performed in near real-time, making it highly suitable for the fluctuating demand conditions typical of district heating systems. Hitaveitan á höfuðborgarsvæðinu byggir mikið á nýtingu jarðhita, einn af lykilþáttum hita veitunnar er djúpdælukerfi sem staðsett er í Reykjahlíð í Mosfellsdal. Enn á þó eftir að fullkomna virkni kerfisins til að ná fram hámarks heildarnýtni. Dælukerfið samanstendur af háspenntum djúpdælum og öxuldælum. Það að uppsetning dælukerfisins innihaldi mis munandi gerðir dæla með mismunandi stýringum gerir það að verkum að bestun kerfisins verður þung í útreikningi. Í þessari ritgerð er leitast við að ná fram hagræðingu með því að samþætta vökvahermilíkan, þróað með Epanet, við Dueling Deep Q-Network (DQN) að ferð, þar sem taugakerfið er notað sem nálgunarfall á flókna, ólínulega og ókúpta sambandi vatnsflæðis og orkunotkunar. Tvær útfærslur eru skoðaðar, sú árangursríkasta skilar 6,5% lækkun á orkunotkun kerfisins miðað við núverandi virkni, en uppfyllir jafnframt eftirspurn á nákvæman ... Master Thesis Iceland Reykjavík Reykjavík Skemman (Iceland) Reykjahlíð ENVELOPE(-16.912,-16.912,65.642,65.642) Reykjavík
spellingShingle Vélaverkfræði
Meistaraprófsritgerðir
Jarðhitanýting
Bestun
Dælur
Orkunotkun
Mechanical engineering
Geothermal space heating
Mathematical optimization
Pumping machinery
Reinforcement Learning
Heating from central stations
Friðrik Tryggvi Róbertsson 1997-
Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title_full Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title_fullStr Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title_full_unstemmed Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title_short Optimal operation of a low-temperature geothermal well pump network : a Dueling Deep Q-network approach
title_sort optimal operation of a low-temperature geothermal well pump network : a dueling deep q-network approach
topic Vélaverkfræði
Meistaraprófsritgerðir
Jarðhitanýting
Bestun
Dælur
Orkunotkun
Mechanical engineering
Geothermal space heating
Mathematical optimization
Pumping machinery
Reinforcement Learning
Heating from central stations
topic_facet Vélaverkfræði
Meistaraprófsritgerðir
Jarðhitanýting
Bestun
Dælur
Orkunotkun
Mechanical engineering
Geothermal space heating
Mathematical optimization
Pumping machinery
Reinforcement Learning
Heating from central stations
url https://hdl.handle.net/1946/48707