Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland

Deformation models are an important tool to study subsurface processes at active volcanoes. Numerical deformation models can include complex irregular features like topography or crustal heterogeneity, avoiding the potential oversimplifications often necessary for analytical models. Elastic structur...

Full description

Bibliographic Details
Main Author: Sonja H. M. Greiner 1995-
Other Authors: Háskóli Íslands
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/1946/38435
id ftskemman:oai:skemman.is:1946/38435
record_format openpolar
spelling ftskemman:oai:skemman.is:1946/38435 2023-05-15T16:51:30+02:00 Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland Sonja H. M. Greiner 1995- Háskóli Íslands 2021-05 application/pdf http://hdl.handle.net/1946/38435 en eng http://hdl.handle.net/1946/38435 Jarðeðlisfræði Thesis Master's 2021 ftskemman 2022-12-11T06:59:47Z Deformation models are an important tool to study subsurface processes at active volcanoes. Numerical deformation models can include complex irregular features like topography or crustal heterogeneity, avoiding the potential oversimplifications often necessary for analytical models. Elastic structures based on seismic velocities, provide the dynamic elastic modulus, but due to different strain amplitudes, the static modulus is relevant for deformation studies. However, since there is no commonly acknowledged relation between both types of elastic moduli, the dynamic one is often used in deformation models instead. A Finite Element deformation model was developed for the Icelandic subglacial volcano Grímsvötn, including real topography and a 3D elastic structure. The dynamic elastic moduli, which were derived from seismic velocity and density structures, were converted into static elastic moduli via a pressure-dependent relation. There is only one continuous GPS-station, GFUM, located on a nunatak on the caldera rim and the influence of its proximity to a steep cliff on deformation has not been studied previously. Based on GPS-observations from the 2011-eruption at Grímsvötn, depth and pressure change estimates for a shallow magma chamber were found testing different geometries. Combining the elastic structure with the topography enhances the influence of the topography, requiring a central magma chamber depth between 2-4 km below the caldera floor, and a co-eruptive pressure change of 5-50 MPa to fit the observed deformation. Independent of the geometry, the model requires larger source depths than previous analytical deformation studies suggested which shows the importance of considering crustal heterogeneity and static moduli in deformation models. Thesis Iceland Skemman (Iceland)
institution Open Polar
collection Skemman (Iceland)
op_collection_id ftskemman
language English
topic Jarðeðlisfræði
spellingShingle Jarðeðlisfræði
Sonja H. M. Greiner 1995-
Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
topic_facet Jarðeðlisfræði
description Deformation models are an important tool to study subsurface processes at active volcanoes. Numerical deformation models can include complex irregular features like topography or crustal heterogeneity, avoiding the potential oversimplifications often necessary for analytical models. Elastic structures based on seismic velocities, provide the dynamic elastic modulus, but due to different strain amplitudes, the static modulus is relevant for deformation studies. However, since there is no commonly acknowledged relation between both types of elastic moduli, the dynamic one is often used in deformation models instead. A Finite Element deformation model was developed for the Icelandic subglacial volcano Grímsvötn, including real topography and a 3D elastic structure. The dynamic elastic moduli, which were derived from seismic velocity and density structures, were converted into static elastic moduli via a pressure-dependent relation. There is only one continuous GPS-station, GFUM, located on a nunatak on the caldera rim and the influence of its proximity to a steep cliff on deformation has not been studied previously. Based on GPS-observations from the 2011-eruption at Grímsvötn, depth and pressure change estimates for a shallow magma chamber were found testing different geometries. Combining the elastic structure with the topography enhances the influence of the topography, requiring a central magma chamber depth between 2-4 km below the caldera floor, and a co-eruptive pressure change of 5-50 MPa to fit the observed deformation. Independent of the geometry, the model requires larger source depths than previous analytical deformation studies suggested which shows the importance of considering crustal heterogeneity and static moduli in deformation models.
author2 Háskóli Íslands
format Thesis
author Sonja H. M. Greiner 1995-
author_facet Sonja H. M. Greiner 1995-
author_sort Sonja H. M. Greiner 1995-
title Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
title_short Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
title_full Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
title_fullStr Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
title_full_unstemmed Including topography and a 3D-elastic structure into a Finite-Element deformation model of Grímsvötn, Iceland
title_sort including topography and a 3d-elastic structure into a finite-element deformation model of grímsvötn, iceland
publishDate 2021
url http://hdl.handle.net/1946/38435
genre Iceland
genre_facet Iceland
op_relation http://hdl.handle.net/1946/38435
_version_ 1766041619802357760