AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland

The AERMOD model was evaluated with the aim to assess the applicability of the software to give reasonable results, in estimating H2S concentration from two geothermal fields affected by different weather conditions. The study cases were geothermal emissions from the Ulubelu power plants in Indonesi...

Full description

Bibliographic Details
Main Author: Irma Khoirunissa 1979-
Other Authors: Háskóli Íslands
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/1946/31882
id ftskemman:oai:skemman.is:1946/31882
record_format openpolar
spelling ftskemman:oai:skemman.is:1946/31882 2023-05-15T16:49:40+02:00 AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland Irma Khoirunissa 1979- Háskóli Íslands 2018-10 application/pdf http://hdl.handle.net/1946/31882 en eng http://hdl.handle.net/1946/31882 Umhverfis- og auðlindafræði Jarðhiti Jarðhitanýting Umhverfisáhrif Reiknilíkön Mengun Thesis 2018 ftskemman 2022-12-11T06:52:59Z The AERMOD model was evaluated with the aim to assess the applicability of the software to give reasonable results, in estimating H2S concentration from two geothermal fields affected by different weather conditions. The study cases were geothermal emissions from the Ulubelu power plants in Indonesia, and the emissions from the Hellisheidi and Nesjavellir power plants in Iceland. The modeled H2S distribution was also compared to observation H2S values with periods of up to one-year data. AERMOD was used to calculate the maximum concentration of 1-hour (odor standard), 8-hour (occupational health standard), 24-hour and annual time averages (public health standard). The test cases included different model setup of elevated and flat terrain options, as well as various meteorological data (e.g. onsite and offsite). Overall, the model performed better for a long-term period (annual) than a short-term period (1-hour and 24-hour), except for the Ulubelu case, where the model at 24-hour period agreed well with the measurement data sample points taken from up to 3 km from the source. In contrast, for the Hellisheidi and Nesjavellir case, the models had difficulty in predicting the concentration at receptors within 25 km from the sources. When evaluating the level of H2S concentration based on seasons, the results of the model showed higher concentrations during the winter season than summer season for the Hellisheidi and Nesjavellir case. For the Ulubelu case, the predicted H2S concentration during the dry season was estimated to be higher than during the wet season. The study highlighted the influence of weather conditions (i.e., wind stability in a tropical climate compared to cold weather) on the dispersion of geothermal emissions, as well as the effect distance of meteorological stations, receptor´s and source’s location, and terrain height have on the results of model simulations. The study shows that the model simulation does not work well when the source is far away, the weather changes rapidly and the terrain is ... Thesis Iceland Skemman (Iceland) Nesjavellir ENVELOPE(-21.251,-21.251,64.115,64.115)
institution Open Polar
collection Skemman (Iceland)
op_collection_id ftskemman
language English
topic Umhverfis- og auðlindafræði
Jarðhiti
Jarðhitanýting
Umhverfisáhrif
Reiknilíkön
Mengun
spellingShingle Umhverfis- og auðlindafræði
Jarðhiti
Jarðhitanýting
Umhverfisáhrif
Reiknilíkön
Mengun
Irma Khoirunissa 1979-
AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
topic_facet Umhverfis- og auðlindafræði
Jarðhiti
Jarðhitanýting
Umhverfisáhrif
Reiknilíkön
Mengun
description The AERMOD model was evaluated with the aim to assess the applicability of the software to give reasonable results, in estimating H2S concentration from two geothermal fields affected by different weather conditions. The study cases were geothermal emissions from the Ulubelu power plants in Indonesia, and the emissions from the Hellisheidi and Nesjavellir power plants in Iceland. The modeled H2S distribution was also compared to observation H2S values with periods of up to one-year data. AERMOD was used to calculate the maximum concentration of 1-hour (odor standard), 8-hour (occupational health standard), 24-hour and annual time averages (public health standard). The test cases included different model setup of elevated and flat terrain options, as well as various meteorological data (e.g. onsite and offsite). Overall, the model performed better for a long-term period (annual) than a short-term period (1-hour and 24-hour), except for the Ulubelu case, where the model at 24-hour period agreed well with the measurement data sample points taken from up to 3 km from the source. In contrast, for the Hellisheidi and Nesjavellir case, the models had difficulty in predicting the concentration at receptors within 25 km from the sources. When evaluating the level of H2S concentration based on seasons, the results of the model showed higher concentrations during the winter season than summer season for the Hellisheidi and Nesjavellir case. For the Ulubelu case, the predicted H2S concentration during the dry season was estimated to be higher than during the wet season. The study highlighted the influence of weather conditions (i.e., wind stability in a tropical climate compared to cold weather) on the dispersion of geothermal emissions, as well as the effect distance of meteorological stations, receptor´s and source’s location, and terrain height have on the results of model simulations. The study shows that the model simulation does not work well when the source is far away, the weather changes rapidly and the terrain is ...
author2 Háskóli Íslands
format Thesis
author Irma Khoirunissa 1979-
author_facet Irma Khoirunissa 1979-
author_sort Irma Khoirunissa 1979-
title AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
title_short AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
title_full AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
title_fullStr AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
title_full_unstemmed AERMOD Modeling of Hydrogen Sulfide (H2S) Concentration from Geothermal Power Plants in Ulubelu, Indonesia, and Hellisheidi-Nesjavellir, Iceland
title_sort aermod modeling of hydrogen sulfide (h2s) concentration from geothermal power plants in ulubelu, indonesia, and hellisheidi-nesjavellir, iceland
publishDate 2018
url http://hdl.handle.net/1946/31882
long_lat ENVELOPE(-21.251,-21.251,64.115,64.115)
geographic Nesjavellir
geographic_facet Nesjavellir
genre Iceland
genre_facet Iceland
op_relation http://hdl.handle.net/1946/31882
_version_ 1766039837596450816