A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation
We develop a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for the efficient numerical simulation of the parametric Navier–Stokes equations in the stream function-vorticity formulation. Unlike previous works, we choose different reduced coefficients for the vorticity...
Published in: | Computers & Fluids |
---|---|
Main Authors: | , , |
Other Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://hdl.handle.net/20.500.11767/129110 https://doi.org/10.1016/j.compfluid.2022.105536 https://arxiv.org/abs/2201.00756 |
id |
ftsissa:oai:iris.sissa.it:20.500.11767/129110 |
---|---|
record_format |
openpolar |
spelling |
ftsissa:oai:iris.sissa.it:20.500.11767/129110 2023-05-15T17:32:21+02:00 A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation Girfoglio M. Quaini A. Rozza G. Girfoglio, M. Quaini, A. Rozza, G. 2022 https://hdl.handle.net/20.500.11767/129110 https://doi.org/10.1016/j.compfluid.2022.105536 https://arxiv.org/abs/2201.00756 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000827528000007 volume:244 journal:COMPUTERS & FLUIDS info:eu-repo/grantAgreement/EC/H2020/681447 http://hdl.handle.net/20.500.11767/129110 doi:10.1016/j.compfluid.2022.105536 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85132876905 https://arxiv.org/abs/2201.00756 Galerkin projection Navier–stokes equation Proper orthogonal decomposition Reduced order model Stream function-vorticity formulation Settore MAT/08 - Analisi Numerica info:eu-repo/semantics/article 2022 ftsissa https://doi.org/20.500.11767/12911010.1016/j.compfluid.2022.105536 2023-03-21T23:26:37Z We develop a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for the efficient numerical simulation of the parametric Navier–Stokes equations in the stream function-vorticity formulation. Unlike previous works, we choose different reduced coefficients for the vorticity and stream function fields. In addition, for parametric studies we use a global POD basis space obtained from a database of time dependent full order snapshots related to sample points in the parameter space. We test the performance of our ROM strategy with the well-known vortex merger benchmark and a more complex case study featuring the geometry of the North Atlantic Ocean. Accuracy and efficiency are assessed for both time reconstruction and physical parameterization. Article in Journal/Newspaper North Atlantic International School for Advanced Studies (SISSA), Trieste: SISSA Digital Library (SDL) Computers & Fluids 244 105536 |
institution |
Open Polar |
collection |
International School for Advanced Studies (SISSA), Trieste: SISSA Digital Library (SDL) |
op_collection_id |
ftsissa |
language |
English |
topic |
Galerkin projection Navier–stokes equation Proper orthogonal decomposition Reduced order model Stream function-vorticity formulation Settore MAT/08 - Analisi Numerica |
spellingShingle |
Galerkin projection Navier–stokes equation Proper orthogonal decomposition Reduced order model Stream function-vorticity formulation Settore MAT/08 - Analisi Numerica Girfoglio M. Quaini A. Rozza G. A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
topic_facet |
Galerkin projection Navier–stokes equation Proper orthogonal decomposition Reduced order model Stream function-vorticity formulation Settore MAT/08 - Analisi Numerica |
description |
We develop a Proper Orthogonal Decomposition (POD)-Galerkin based Reduced Order Model (ROM) for the efficient numerical simulation of the parametric Navier–Stokes equations in the stream function-vorticity formulation. Unlike previous works, we choose different reduced coefficients for the vorticity and stream function fields. In addition, for parametric studies we use a global POD basis space obtained from a database of time dependent full order snapshots related to sample points in the parameter space. We test the performance of our ROM strategy with the well-known vortex merger benchmark and a more complex case study featuring the geometry of the North Atlantic Ocean. Accuracy and efficiency are assessed for both time reconstruction and physical parameterization. |
author2 |
Girfoglio, M. Quaini, A. Rozza, G. |
format |
Article in Journal/Newspaper |
author |
Girfoglio M. Quaini A. Rozza G. |
author_facet |
Girfoglio M. Quaini A. Rozza G. |
author_sort |
Girfoglio M. |
title |
A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
title_short |
A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
title_full |
A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
title_fullStr |
A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
title_full_unstemmed |
A POD-Galerkin reduced order model for the Navier–Stokes equations in stream function-vorticity formulation |
title_sort |
pod-galerkin reduced order model for the navier–stokes equations in stream function-vorticity formulation |
publishDate |
2022 |
url |
https://hdl.handle.net/20.500.11767/129110 https://doi.org/10.1016/j.compfluid.2022.105536 https://arxiv.org/abs/2201.00756 |
genre |
North Atlantic |
genre_facet |
North Atlantic |
op_relation |
info:eu-repo/semantics/altIdentifier/wos/WOS:000827528000007 volume:244 journal:COMPUTERS & FLUIDS info:eu-repo/grantAgreement/EC/H2020/681447 http://hdl.handle.net/20.500.11767/129110 doi:10.1016/j.compfluid.2022.105536 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85132876905 https://arxiv.org/abs/2201.00756 |
op_doi |
https://doi.org/20.500.11767/12911010.1016/j.compfluid.2022.105536 |
container_title |
Computers & Fluids |
container_volume |
244 |
container_start_page |
105536 |
_version_ |
1766130427350745088 |