Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada

The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000–5000 μm, 250–1000 μm, 250–0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada’s premier growing area for the P...

Full description

Bibliographic Details
Main Authors: Kazmiruk, Tamara N., Kazmiruk, Vasily D., Bendell, L.I.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://summit.sfu.ca/item/18984
id ftsimonfu:oai:summit.sfu.ca:18984
record_format openpolar
spelling ftsimonfu:oai:summit.sfu.ca:18984 2023-05-15T15:59:07+02:00 Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada Kazmiruk, Tamara N. Kazmiruk, Vasily D. Bendell, L.I. 2018-05-23 http://summit.sfu.ca/item/18984 English eng http://summit.sfu.ca/item/18984 Article 2018 ftsimonfu 2022-04-07T18:42:20Z The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000–5000 μm, 250–1000 μm, 250–0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada’s premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100–300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and 250–0.63 μm sediment size class, whereas microfragments and microfibers were generally identified in all 5 sediment size classes. Abundance and distribution of the three types of microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC’s premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada’s oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world. Article in Journal/Newspaper Crassostrea gigas Pacific oyster Summit - SFU Research Repository (Simon Fraser University) Canada Pacific British Columbia ENVELOPE(-125.003,-125.003,54.000,54.000) Lambert Channel ENVELOPE(-114.087,-114.087,68.584,68.584)
institution Open Polar
collection Summit - SFU Research Repository (Simon Fraser University)
op_collection_id ftsimonfu
language English
description The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm, 1000–5000 μm, 250–1000 μm, 250–0.63 μm and < 0.63 μm) were determined for 16 sites within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Canada’s premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were found at all sampling locations indicating widespread contamination of this region with these particles. Three types of microplastics were recovered: microbeads, which occurred in the greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which were much less in number compared with microbeads and occurred in similar amounts (100–300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and 250–0.63 μm sediment size class, whereas microfragments and microfibers were generally identified in all 5 sediment size classes. Abundance and distribution of the three types of microplastics were spatially dependent with principal component analysis (PCA) indicating that 84 percent of the variation in abundance and distribution was due to the presence of high numbers of microbeads at three locations within the study region. At these sites, microbeads expressed as a percent component of the sediment by weight was similar to key geochemical components that govern trace metal behavior and availability to benthic organisms. Microbeads have been shown to accumulate metals from the aquatic environment, hence in addition to the traditional geochemical components such as silt and organic matter, microplastics also need to be considered as a sediment component that can influence trace metal geochemistry. Our findings have shown that BC’s premier oyster growing region is highly contaminated with microplastics, notably microbeads. It would be prudent to assess the degree to which oysters from this region are ingesting microplastics. If so, it would have direct implications for Canada’s oyster farming industry with respect to the health of the oyster and the quality of product that is being farmed and sets an example for other shellfish growing regions of the world.
format Article in Journal/Newspaper
author Kazmiruk, Tamara N.
Kazmiruk, Vasily D.
Bendell, L.I.
spellingShingle Kazmiruk, Tamara N.
Kazmiruk, Vasily D.
Bendell, L.I.
Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
author_facet Kazmiruk, Tamara N.
Kazmiruk, Vasily D.
Bendell, L.I.
author_sort Kazmiruk, Tamara N.
title Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
title_short Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
title_full Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
title_fullStr Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
title_full_unstemmed Abundance and Distribution of Microplastics within Surface Sediments of a Key Shellfish Growing Region of Canada
title_sort abundance and distribution of microplastics within surface sediments of a key shellfish growing region of canada
publishDate 2018
url http://summit.sfu.ca/item/18984
long_lat ENVELOPE(-125.003,-125.003,54.000,54.000)
ENVELOPE(-114.087,-114.087,68.584,68.584)
geographic Canada
Pacific
British Columbia
Lambert Channel
geographic_facet Canada
Pacific
British Columbia
Lambert Channel
genre Crassostrea gigas
Pacific oyster
genre_facet Crassostrea gigas
Pacific oyster
op_relation http://summit.sfu.ca/item/18984
_version_ 1766394897637572608