MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE

Mathematical modelling of fluid flow and total heat transfer process in the wellbore is very important for predicting the actual situation in the realm. The wellbore consists of cement, tubing, casing, and for the total heat transfer, the effect of their respective temperatures on the flowing fluid...

Full description

Bibliographic Details
Main Authors: Jibrin, H.M., Hannafi, J.
Format: Article in Journal/Newspaper
Language:English
Published: Faculty of Science, Kaduna State University, Kaduna - Nigeria 2021
Subjects:
Online Access:https://www.scienceworldjournal.org/article/view/21761
id ftscholexchange:oai:ojs.scholarlyexchange.org:article/21761
record_format openpolar
spelling ftscholexchange:oai:ojs.scholarlyexchange.org:article/21761 2023-05-15T17:58:12+02:00 MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE Jibrin, H.M. Hannafi, J. 2021-06-30 application/pdf https://www.scienceworldjournal.org/article/view/21761 eng eng Faculty of Science, Kaduna State University, Kaduna - Nigeria https://www.scienceworldjournal.org/article/view/21761/14073 https://www.scienceworldjournal.org/article/view/21761 Copyright (c) 2021 Science World Journal https://www.scienceworldjournal.org/ Science World Journal; Vol 16 No 2 (2021); 133 - 137 1597-6343 2756-391X info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2021 ftscholexchange 2023-01-04T07:16:06Z Mathematical modelling of fluid flow and total heat transfer process in the wellbore is very important for predicting the actual situation in the realm. The wellbore consists of cement, tubing, casing, and for the total heat transfer, the effect of their respective temperatures on the flowing fluid and the surrounding earth must be investigated. The hot fluid from the reservoir moving up the wellbore had to pass through the tubing which is surrounded by casing and the cement and the surrounding earth formation and subsequently causes loss to the fluid temperature. Many studies about the wellbore consider that fluid temperature from bottom to top of the wellbore remain constant during the process and that heat transfer between the fluid and the surrounding earth temperature does not change resulting to inadequate optimization of wellbore function. This scenario if not properly studied will lead to inefficiency of optimising the wellbore or even premature closure of the wellbore. In this paper, a one-dimensional transient compressible model in the radial direction comprising the conservation of mass and momentum has been presented to investigate the behavior of the heat exchange between fluid temperature and the surrounding earth. Heat transfer equation was also developed to account for radii of tubing, casing and cement. The model was solved by flux vector splitting method of Steger Warming. The method allows the application of gas state equation which is best used in fluid temperature calculation and also account for heat exchange between fluid temperature and surrounding earth. It also allows investigation of the effect of wellbore temperature which is surrounded by casing and cement on the fluid temperature and can be extended to oil reservoir modelling especially in permafrost regions where geothermal gradient is significant. The result obtained shows that flowing fluid temperature drop toward the wellhead due to earth temperature effect on the flowing fluid. It can help gas production engineers in selecting ... Article in Journal/Newspaper permafrost Scholarly Exchange: E-Journals
institution Open Polar
collection Scholarly Exchange: E-Journals
op_collection_id ftscholexchange
language English
description Mathematical modelling of fluid flow and total heat transfer process in the wellbore is very important for predicting the actual situation in the realm. The wellbore consists of cement, tubing, casing, and for the total heat transfer, the effect of their respective temperatures on the flowing fluid and the surrounding earth must be investigated. The hot fluid from the reservoir moving up the wellbore had to pass through the tubing which is surrounded by casing and the cement and the surrounding earth formation and subsequently causes loss to the fluid temperature. Many studies about the wellbore consider that fluid temperature from bottom to top of the wellbore remain constant during the process and that heat transfer between the fluid and the surrounding earth temperature does not change resulting to inadequate optimization of wellbore function. This scenario if not properly studied will lead to inefficiency of optimising the wellbore or even premature closure of the wellbore. In this paper, a one-dimensional transient compressible model in the radial direction comprising the conservation of mass and momentum has been presented to investigate the behavior of the heat exchange between fluid temperature and the surrounding earth. Heat transfer equation was also developed to account for radii of tubing, casing and cement. The model was solved by flux vector splitting method of Steger Warming. The method allows the application of gas state equation which is best used in fluid temperature calculation and also account for heat exchange between fluid temperature and surrounding earth. It also allows investigation of the effect of wellbore temperature which is surrounded by casing and cement on the fluid temperature and can be extended to oil reservoir modelling especially in permafrost regions where geothermal gradient is significant. The result obtained shows that flowing fluid temperature drop toward the wellhead due to earth temperature effect on the flowing fluid. It can help gas production engineers in selecting ...
format Article in Journal/Newspaper
author Jibrin, H.M.
Hannafi, J.
spellingShingle Jibrin, H.M.
Hannafi, J.
MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
author_facet Jibrin, H.M.
Hannafi, J.
author_sort Jibrin, H.M.
title MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
title_short MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
title_full MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
title_fullStr MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
title_full_unstemmed MATHEMATICAL MODELING OF FLUID FLOW AND TOTAL HEAT TRANSFER PROCESS IN WELLBORE
title_sort mathematical modeling of fluid flow and total heat transfer process in wellbore
publisher Faculty of Science, Kaduna State University, Kaduna - Nigeria
publishDate 2021
url https://www.scienceworldjournal.org/article/view/21761
genre permafrost
genre_facet permafrost
op_source Science World Journal; Vol 16 No 2 (2021); 133 - 137
1597-6343
2756-391X
op_relation https://www.scienceworldjournal.org/article/view/21761/14073
https://www.scienceworldjournal.org/article/view/21761
op_rights Copyright (c) 2021 Science World Journal
https://www.scienceworldjournal.org/
_version_ 1766166769316134912